期刊文献+
共找到17,450篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
1
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Relationships between Terrain Features and Forecasting Errors of Surface Wind Speeds in a Mesoscale Numerical Weather Prediction Model
2
作者 Wenbo XUE Hui YU +1 位作者 Shengming TANG Wei HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1161-1170,共10页
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM... Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study. 展开更多
关键词 surface wind speed terrain features error analysis MOS calibration model
下载PDF
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
3
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
下载PDF
Comparative Study of Response Surface Designs with Errors-in-Variables Model 被引量:2
4
作者 何桢 方俊涛 《Transactions of Tianjin University》 EI CAS 2011年第2期146-150,共5页
This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least square... This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance. 展开更多
关键词 response surface modeling errors in variables scaled prediction variance
下载PDF
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:1
5
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
Errors-in-variables模型的参数估计 被引量:3
6
作者 时正华 袁永生 《曲阜师范大学学报(自然科学版)》 CAS 2005年第1期35-37,共3页
介绍了Errors_in_variables模型 ,利用Fisher得分算法 ,给出了在自变量的随机影响因素和因变量的随机影响因素相互独立和无重复测量数据情况下Errors_in_variables模型参数估计的迭代公式 .
关键词 随机自变量 errors-in-variables模型 Fisher得分算法
下载PDF
基于errors-in-variables的预测模型及其应用 被引量:5
7
作者 程龙生 《数理统计与管理》 CSSCI 北大核心 2005年第2期55-59,共5页
预测是统计学实际应用的一个主要方面,多元线性回归预测是一种很好的方法,广泛地应用在各种实际领域,但其局限性及不足也是明显的。本文以一种新的观点认识数据,即认为变量的观测里均含有误差,同时认为不应删除经慎重选择进来的解释变... 预测是统计学实际应用的一个主要方面,多元线性回归预测是一种很好的方法,广泛地应用在各种实际领域,但其局限性及不足也是明显的。本文以一种新的观点认识数据,即认为变量的观测里均含有误差,同时认为不应删除经慎重选择进来的解释变量。为此,本文提出了一种新的多元预测方法———多元线性EIV预测。本文还考虑了新预测模型的一个实例应用,并从相对偏差上与多元回归预测进行了比较,从而揭示了多元线性EIV预测的先进性及较好的预测精度。 展开更多
关键词 预测 回归分析 errors-in-variables(EIV) 结构关系模型
下载PDF
APPLICATION OF FRF ESTIMATOR BASED ON ERRORS-IN-VARIABLES MODEL IN MULTI-INPUT MULTI-OUTPUT VIBRATION CONTROL SYSTEM
8
作者 GUAN Guangfeng CONG Dacheng HAN Junwei LI Hongren 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期101-105,共5页
The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises i... The FRF estimator based on the errors-in-variables (EV) model of multi-input multi-output (MIMO) system is presented to reduce the bias error of FRF HI estimator. The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF. The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation. The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF (degree-of-freedom) hydraulic vibration table. The result shows that it is favorable to improve the control precision of the MIMO vibration control system. 展开更多
关键词 Multi-input multi-output(MIMO) system errors-in-variables(EV) model 6-DOF hydraulic vibration table Waveform replication
下载PDF
一类线性errors-in-variables模型的参数强相合估计及其a.s.收敛速度 被引量:1
9
作者 程龙生 姚景尹 《高校应用数学学报(A辑)》 CSCD 北大核心 1996年第3期313-320,共8页
本文讨论了如下一类线性errors-in-variables模型——多元线性结构关系模型β′xk+α=0,ξk=xk+εk.{k=1,2,…,n.其中,{xk:k=1,2,…,n}为一组i.i.d.的m维随机向量,{... 本文讨论了如下一类线性errors-in-variables模型——多元线性结构关系模型β′xk+α=0,ξk=xk+εk.{k=1,2,…,n.其中,{xk:k=1,2,…,n}为一组i.i.d.的m维随机向量,{εk:k=1,2,…,n}是i.i.d.的随机误差,E(ε1)=0,Var(ε1)=σ2Im.且{xk:k=1,2,…,n}与{εk:k=1,2,…,n}相互独立.在一些条件下,我们证明了估计量β,α,σ2的强相合性、唯一性,并给出了估计量的收敛速度为o(n-1-1q),这里q∈[1,2). 展开更多
关键词 收敛速度 线性模型 强相合估计 多元分析
下载PDF
Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
10
作者 王文 徐涛 +1 位作者 张仪 the J-TEXT team 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期545-551,共7页
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr... An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature. 展开更多
关键词 plasma responses drift-MHD model error field penetration
下载PDF
Discovering Latent Variables for the Tasks With Confounders in Multi-Agent Reinforcement Learning
11
作者 Kun Jiang Wenzhang Liu +2 位作者 Yuanda Wang Lu Dong Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1591-1604,共14页
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ... Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms. 展开更多
关键词 Latent variable model maximum entropy multi-agent reinforcement learning(MARL) multi-agent system
下载PDF
Positional Error Model of Line Segments with Modeling and Measuring Errors Using Brownian Bridge 被引量:1
12
作者 Xiaohua TONG Lejingyi ZHOU Yanmin JIN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期1-10,共10页
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also... Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data. 展开更多
关键词 spatial data line segment modeling error measuring error Brownian bridge
下载PDF
Temporally Preserving Latent Variable Models:Offline and Online Training for Reconstruction and Interpretation of Fault Data for Gearbox Condition Monitoring
13
作者 Ryan Balshaw P.Stephan Heyns +1 位作者 Daniel N.Wilke Stephan Schmidt 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期156-177,共22页
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati... Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics. 展开更多
关键词 Condition monitoring unsupervised learning latent variable models temporal preservation training approaches
下载PDF
Spatial Expression of Assembly Geometric Errors for Multi-axis Machine Tool Based on Kinematic Jacobian-Torsor Model
14
作者 Ang Tian Shun Liu +2 位作者 Kun Chen Wei Mo Sun Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期234-248,共15页
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com... Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors. 展开更多
关键词 Geometric error Machine tool Jacobian-Torsor model TOLERANCE Spatial expression
下载PDF
Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model 被引量:2
15
作者 Leyang Wang Shuhao Han 《Geodesy and Geodynamics》 EI CSCD 2023年第4期385-391,共7页
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv... To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models. 展开更多
关键词 Mixed additive and multiplicative random error model Parameter estimation Least squares Cat swarm optimization Powell method
下载PDF
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones. Part Ⅱ: Model Uncertainty 被引量:3
16
作者 Feifan ZHOU Wansuo DUAN +1 位作者 He ZHANG Munehiko YAMAGUCHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第10期1277-1290,共14页
This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model... This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II.Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60?S and 60?N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved. 展开更多
关键词 GRAPES error diagnosis model uncertainty PREDICTABILITY TROPICAL CYCLONE
下载PDF
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
17
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
下载PDF
Approach for wideband direction-of-arrival estimation in the presence of array model errors 被引量:3
18
作者 Chen Deli Zhang Cong Tao Huamin Lu Huanzhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期69-75,共7页
The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A c... The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results. 展开更多
关键词 DIRECTION-OF-ARRIVAL array model errors wideband.
下载PDF
Locating Error Considering Dimensional Errors Modeling for Multistation Manufacturing System 被引量:2
19
作者 ZHANG Faping LU Jiping TANG Shuiyuan SUN Houfang JIAO Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期765-773,共9页
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to t... Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization. 展开更多
关键词 multistation manufacturing process error propagation dimensional errors state space model
下载PDF
EMPIRICAL LIKELIHOOD FOR LINEAR MODELS UNDER m-DEPENDENT ERRORS 被引量:3
20
作者 QinYongsong JiangBo LiYufang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期205-212,共8页
In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors.It is shown that the blockwise empirical likelihood is a good way to ... In this paper,the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors.It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples. 展开更多
关键词 m-dependent errors linear model empirical likelihood.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部