The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Net...The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.展开更多
The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of informationflow-ing over the network.The data will always remain under the threat of t...The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of informationflow-ing over the network.The data will always remain under the threat of technolo-gical suffering where intruders and hackers consistently try to breach the security systems by gaining personal information insights.In this paper,the authors pro-posed the HDTbNB(Hybrid Decision Tree-based Naïve Bayes)algorithm tofind the essential features without data scaling to maximize the model’s performance by reducing the false alarm rate and training period to reduce zero frequency with enhanced accuracy of IDS(Intrusion Detection System)and to further analyze the performance execution of distinct machine learning algorithms as Naïve Bayes,Decision Tree,K-Nearest Neighbors and Logistic Regression over KDD 99 data-set.The performance of algorithm is evaluated by making a comparative analysis of computed parameters as accuracy,macro average,and weighted average.Thefindings were concluded as a percentage increase in accuracy,precision,sensitiv-ity,specificity,and a decrease in misclassification as 9.3%,6.4%,12.5%,5.2%and 81%.展开更多
文摘The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.
文摘The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of informationflow-ing over the network.The data will always remain under the threat of technolo-gical suffering where intruders and hackers consistently try to breach the security systems by gaining personal information insights.In this paper,the authors pro-posed the HDTbNB(Hybrid Decision Tree-based Naïve Bayes)algorithm tofind the essential features without data scaling to maximize the model’s performance by reducing the false alarm rate and training period to reduce zero frequency with enhanced accuracy of IDS(Intrusion Detection System)and to further analyze the performance execution of distinct machine learning algorithms as Naïve Bayes,Decision Tree,K-Nearest Neighbors and Logistic Regression over KDD 99 data-set.The performance of algorithm is evaluated by making a comparative analysis of computed parameters as accuracy,macro average,and weighted average.Thefindings were concluded as a percentage increase in accuracy,precision,sensitiv-ity,specificity,and a decrease in misclassification as 9.3%,6.4%,12.5%,5.2%and 81%.