Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the e...Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography–mass spectrometry(GC–MS) analysis. Results: Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone(PK) type, perilla ketone, myristicin(PM) type, perilla ketone, unknown(PU) type, perilla ketone, beta-caryophyllene, myristicine(PB) type, perilla ketone, myristicin, unknown(PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene(PEMB) type, and the perilla ketone, limonene, betacryophyllene, myristicin(L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. Conclusion:The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time.展开更多
Perilla frutescens,an annual herb of the Labiatae family,has been cultivated in China for more than 2000 years.P.frutescens is the one of the first medicinal and edible plant published by the Ministry of Health.Its le...Perilla frutescens,an annual herb of the Labiatae family,has been cultivated in China for more than 2000 years.P.frutescens is the one of the first medicinal and edible plant published by the Ministry of Health.Its leaves,stems and seeds can be used as medicine and edible food.Because of the abundant nutrients and bioactive components in this plant,P.frutescens has been studied extensively in medicine,food,health care and chemical fields with great prospects for development.This paper reviews the cultivation history,chemical compositions and pharmacological activities of P.frutescens,which provides a reference for the development and utilization of P.frutescens resources.展开更多
Objective:In this study,we aimed to identify the genes involved in leaf margin serration in Perilla frutescens.P.frutescens(Family:Lamiaceae)is widely grown in Asian countries.Perilla leaf is the medicinal part stipul...Objective:In this study,we aimed to identify the genes involved in leaf margin serration in Perilla frutescens.P.frutescens(Family:Lamiaceae)is widely grown in Asian countries.Perilla leaf is the medicinal part stipulated in the Chinese Pharmacopoeia.There are mainly two types of perilla leaves:one with serrated leaf margin which is the phenotype described in the pharmacopoeia and the other with smooth leaf margin.Methods:Transcriptome sequencing,co-expression analysis,and qRT-PCR analysis of six perilla tissues sampled from two different phenotypes(serrated and smooth leaves)were performed.Results:Forty-three differentially expressed genes(DEGs),which may potentially regulate leaf shape,were identified through de novo transcriptome sequencing between the two groups.Genes involved in leaf shape regulation were identified.Simultaneously,we validated five DEGs by qRT-PCR,and the results were consistent with the transcriptome data.In addition,1186 transcription factors(TFs)belonging to 45 TF families were identified.Moreover,the co-expression network of DEGs was constructed.Conclusion:The study identified the key genes that control leaf shape by comparing the transcriptomes.Our findings also provide basic data for further exploring P.frutescens,which can help study the mechanism of leaf shape development and molecular breeding.展开更多
基金supported by funding from the Konkuk University Brain Pool
文摘Objective: To investigate the composition of volatile compounds in the different accessions of Perilla frutescens(P. frutescens) collected from various habitats of China and Japan. Methods: In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography–mass spectrometry(GC–MS) analysis. Results: Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone(PK) type, perilla ketone, myristicin(PM) type, perilla ketone, unknown(PU) type, perilla ketone, beta-caryophyllene, myristicine(PB) type, perilla ketone, myristicin, unknown(PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene(PEMB) type, and the perilla ketone, limonene, betacryophyllene, myristicin(L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. Conclusion:The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time.
基金supported by the National Natural Science Foundation of China(No.81973422)the CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2021-I2M-1-071)。
文摘Perilla frutescens,an annual herb of the Labiatae family,has been cultivated in China for more than 2000 years.P.frutescens is the one of the first medicinal and edible plant published by the Ministry of Health.Its leaves,stems and seeds can be used as medicine and edible food.Because of the abundant nutrients and bioactive components in this plant,P.frutescens has been studied extensively in medicine,food,health care and chemical fields with great prospects for development.This paper reviews the cultivation history,chemical compositions and pharmacological activities of P.frutescens,which provides a reference for the development and utilization of P.frutescens resources.
基金This work was funded by National Natural Science Foundation for regional fund(31860391)Guizhou Province Science and Technology Plan Project(Qian science platform[2019]5656)National Major Project for Breeding New Transgenic Varieties(2016ZX08010-003).
文摘Objective:In this study,we aimed to identify the genes involved in leaf margin serration in Perilla frutescens.P.frutescens(Family:Lamiaceae)is widely grown in Asian countries.Perilla leaf is the medicinal part stipulated in the Chinese Pharmacopoeia.There are mainly two types of perilla leaves:one with serrated leaf margin which is the phenotype described in the pharmacopoeia and the other with smooth leaf margin.Methods:Transcriptome sequencing,co-expression analysis,and qRT-PCR analysis of six perilla tissues sampled from two different phenotypes(serrated and smooth leaves)were performed.Results:Forty-three differentially expressed genes(DEGs),which may potentially regulate leaf shape,were identified through de novo transcriptome sequencing between the two groups.Genes involved in leaf shape regulation were identified.Simultaneously,we validated five DEGs by qRT-PCR,and the results were consistent with the transcriptome data.In addition,1186 transcription factors(TFs)belonging to 45 TF families were identified.Moreover,the co-expression network of DEGs was constructed.Conclusion:The study identified the key genes that control leaf shape by comparing the transcriptomes.Our findings also provide basic data for further exploring P.frutescens,which can help study the mechanism of leaf shape development and molecular breeding.