Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as c...Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as co-solvent was carried out for the production of fatty acid ethyl ester (FAEE). This process reduced the severity of process parameters with high purity biodiesel yield. Process variables such as co-solvent ratio, ethanol to oil molar ratio, reaction temperature and reaction time were optimized. The maximum biodiesel yield of 88% was obtained at ethanol/oil molar ratio of 40:1, co-solvent (hexane) to oil ratio of 0.2% (v/v), reaction temperature of 300°C in 20 min of reaction time. Fatty acid ethyl ester (biodiesel) samples produced from this process were measured and evaluated using GC-MS analytical instrument. Thermo gravimetric analysis (TGA) was also performed to examine the thermal stability of waste cooking oil, ethyl esters and fuel blends. Fuel properties of ethyl esters were determined and compared with the ASTM standards for biodiesel, regular diesel and ethyl esters from different feedstock.展开更多
Caffeic acid phenethyl ester(CAPE) is a natural and rare ingredient with several biological activities, but its industrial production using lipase-catalyzed esterification of caffeic acid(CA) and 2-phenylethanol(PE) i...Caffeic acid phenethyl ester(CAPE) is a natural and rare ingredient with several biological activities, but its industrial production using lipase-catalyzed esterification of caffeic acid(CA) and 2-phenylethanol(PE) in ionic liquids(ILs) is hindered by low substrate concentrations and long reaction time. To set up a high-efficiency bioprocess for production of CAPE, a novel dimethyl sulfoxide(DMSO)–IL co-solvent system was established in this study.The 2%(by volume) DMSO–[Bmim][Tf2N] system was found to be the best medium with higher substrate solubility and conversion of CA. Under the optimum conditions, the substrate concentration of CA was raised 8-fold,the reaction time was reduced by half, and the conversion reached 96.23%. The kinetics follows a ping-pong bi-bi mechanism with inhibition by PE, with kinetic parameters as follows: Vmax= 0.89 mmol · min-1· g-1, Km,CA=42.9 mmol · L-1, Km,PE= 165.7 mmol · L-1, and Ki,PE= 146.2 mmol · L-1. The results suggest that the DMSO cosolvent effect has great potential to enhance the enzymatic synthesis efficiency of CAPE in ILs.展开更多
β-Amino esters were synthesized via ZnCl2-catalyzed Mannich-type reaction of imines and malonate esters under solvent-free conditions in 6 min. The β-amino ester was converted into the corresponding aspartic acid de...β-Amino esters were synthesized via ZnCl2-catalyzed Mannich-type reaction of imines and malonate esters under solvent-free conditions in 6 min. The β-amino ester was converted into the corresponding aspartic acid derivatives.展开更多
The efficient synthesis of N-(diphenylmethylene) glycine alkyl esters was achieved for the first microwave irradiation under solvent-free condition, using PEG or quaternary ammonium salts as phase transfer catalysts...The efficient synthesis of N-(diphenylmethylene) glycine alkyl esters was achieved for the first microwave irradiation under solvent-free condition, using PEG or quaternary ammonium salts as phase transfer catalysts (PTCs). Under the optimum conditions, N-(diphenylmethylene) glycine alkyl esters were obtained in excellent yields in most cases.展开更多
In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present stu...In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present study,the equilibrium distribution of dysprosium(Ⅲ)between an aqueous nitric acid solution and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A)was measured in the range of an initial aqueous dysprosium(Ⅲ)concentration from 1.0×10-3to 1.0×10-1kmol/m 3and PC88A concentration from 0.16 to 0.65 kmol/m3in Shellsol D70 as the diluent.The obtained data were analyzed using the chemically based model in order to correlate the equilibrium distribution ratios.In this model,dysprosium(Ⅲ)was assumed to be extracted with the PC88A dimer as a 1:3 complex,the activities were considered for the aqueous species,and the effective concentration of the PC88A dimer was calculated using Alstad's empirical equation.As a result,the apparent extraction equilibrium constant was determined to be 253(kmol·m- 3)-2with an excellent correlation between the experiment and calculation results in the wide range of the logarithm of the distribution ratio from-2 to 3.5.In conclusion,the methodology in this model would be effective for quantitative description of solvent extraction behavior of general rare earth elements as well as dysprosium.展开更多
Fluoroboric acid adsorbed on silica-gel(HBF4·SiO2) has been found to be an extremely efficient and recyclable catalyst for the preparation of β-enaminones and β-enamino esters under solvent-free conditions.
Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacryla...Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacrylate) at 9.84 GHz were studied in n-heptane at 298 K. The result showed that 1∶1 complex was predominant in these systems. The relaxation time showed a linear dependence with alkyl chain length of both alcohols and acrylic esters, but the dielectric constant showed a reverse trend. A comparative study of the free energy of activation for the dielectric relaxation and viscous flow suggested that a greater interference by neighboring atom was observed in the process of viscous flow than in dielectric relaxation, as the latter involved rotational form of motion, whereas the viscous flow involved both rotational and translational forms of motion.展开更多
Oxalic acid was found to be an efficient catalyst for Pechmann condensation, which includes the reaction between phenols and β-keto esters leading to formation of coumarin derivatives. The advantages of present metho...Oxalic acid was found to be an efficient catalyst for Pechmann condensation, which includes the reaction between phenols and β-keto esters leading to formation of coumarin derivatives. The advantages of present methods are the use of cheap and easy available catalyst, solvent-free reaction conditions, better yields and shorter reaction time.展开更多
In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can ex...In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can extract Cu and/or Ni against Co from chloride medium solutions at pH range of 2.5-4.5. About 2g/l nickel and 0.2g/l copper were removed from the cobalt chloride anolyte containing about 100g/l cobalt and 200g/l chloride ions respectively, the raffinate contains nickel and copper less than 0.03g/l and 0.0003g/l respectively and can be used to electrolyze high-purity cobalt. About 5.5t cobalt anolyte was purified in the simulation industrial experiment and kilogram quantities of cobalt of 99.98% purity and about 95% recovery have been produced.展开更多
文摘Biofuels became more promising alternative to the fossil fuels because of the depletion of fossil resources, renewability, environmental benefits, and energy security. Ethanolysis of waste cooking oil with hexane as co-solvent was carried out for the production of fatty acid ethyl ester (FAEE). This process reduced the severity of process parameters with high purity biodiesel yield. Process variables such as co-solvent ratio, ethanol to oil molar ratio, reaction temperature and reaction time were optimized. The maximum biodiesel yield of 88% was obtained at ethanol/oil molar ratio of 40:1, co-solvent (hexane) to oil ratio of 0.2% (v/v), reaction temperature of 300°C in 20 min of reaction time. Fatty acid ethyl ester (biodiesel) samples produced from this process were measured and evaluated using GC-MS analytical instrument. Thermo gravimetric analysis (TGA) was also performed to examine the thermal stability of waste cooking oil, ethyl esters and fuel blends. Fuel properties of ethyl esters were determined and compared with the ASTM standards for biodiesel, regular diesel and ethyl esters from different feedstock.
基金Supported by the National Natural Science Foundation of China(21206061)the China Postdoctoral Science Foundation funded project(2012M510124,2013T60505)+4 种基金the Natural Science Foundation of Jiangsu Province(BK2009213)the Qing Lan Project of Jiangsu Province(2014)the Graduate Innovation Project of Jiangsu Province(CXZZ13_0713)the Graduate Innovation Project of Jiangsu University of Science and Technology(2013)the Postdoctoral Science Foundation funded project of Jiangsu University(1143002085)
文摘Caffeic acid phenethyl ester(CAPE) is a natural and rare ingredient with several biological activities, but its industrial production using lipase-catalyzed esterification of caffeic acid(CA) and 2-phenylethanol(PE) in ionic liquids(ILs) is hindered by low substrate concentrations and long reaction time. To set up a high-efficiency bioprocess for production of CAPE, a novel dimethyl sulfoxide(DMSO)–IL co-solvent system was established in this study.The 2%(by volume) DMSO–[Bmim][Tf2N] system was found to be the best medium with higher substrate solubility and conversion of CA. Under the optimum conditions, the substrate concentration of CA was raised 8-fold,the reaction time was reduced by half, and the conversion reached 96.23%. The kinetics follows a ping-pong bi-bi mechanism with inhibition by PE, with kinetic parameters as follows: Vmax= 0.89 mmol · min-1· g-1, Km,CA=42.9 mmol · L-1, Km,PE= 165.7 mmol · L-1, and Ki,PE= 146.2 mmol · L-1. The results suggest that the DMSO cosolvent effect has great potential to enhance the enzymatic synthesis efficiency of CAPE in ILs.
基金the financial support form National Natural Science Foundation of China(No.20472116).
文摘β-Amino esters were synthesized via ZnCl2-catalyzed Mannich-type reaction of imines and malonate esters under solvent-free conditions in 6 min. The β-amino ester was converted into the corresponding aspartic acid derivatives.
基金the National Natural Science Foundation of China(Nos.20572131, 20702063).
文摘The efficient synthesis of N-(diphenylmethylene) glycine alkyl esters was achieved for the first microwave irradiation under solvent-free condition, using PEG or quaternary ammonium salts as phase transfer catalysts (PTCs). Under the optimum conditions, N-(diphenylmethylene) glycine alkyl esters were obtained in excellent yields in most cases.
基金the Japan Society for the Promotion of Science for supporting this fellowship work(No.07616)
文摘In view of the importance of solvent extraction of rare earth metals with the acidic organophosphorous reagent,the development of a chemically based model applicable to high concentration is desired.In the present study,the equilibrium distribution of dysprosium(Ⅲ)between an aqueous nitric acid solution and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A)was measured in the range of an initial aqueous dysprosium(Ⅲ)concentration from 1.0×10-3to 1.0×10-1kmol/m 3and PC88A concentration from 0.16 to 0.65 kmol/m3in Shellsol D70 as the diluent.The obtained data were analyzed using the chemically based model in order to correlate the equilibrium distribution ratios.In this model,dysprosium(Ⅲ)was assumed to be extracted with the PC88A dimer as a 1:3 complex,the activities were considered for the aqueous species,and the effective concentration of the PC88A dimer was calculated using Alstad's empirical equation.As a result,the apparent extraction equilibrium constant was determined to be 253(kmol·m- 3)-2with an excellent correlation between the experiment and calculation results in the wide range of the logarithm of the distribution ratio from-2 to 3.5.In conclusion,the methodology in this model would be effective for quantitative description of solvent extraction behavior of general rare earth elements as well as dysprosium.
文摘Fluoroboric acid adsorbed on silica-gel(HBF4·SiO2) has been found to be an extremely efficient and recyclable catalyst for the preparation of β-enaminones and β-enamino esters under solvent-free conditions.
文摘Dielectric relaxation of alcohols (1-propanol, 1-butanol, sec-butanol, tert-butanol, 1-pentanol, 1-heptanol, 1-octanol, and 1-decanol) with acrylic esters (methyl methacrylate, ethyl methacrylate, and butyl methacrylate) at 9.84 GHz were studied in n-heptane at 298 K. The result showed that 1∶1 complex was predominant in these systems. The relaxation time showed a linear dependence with alkyl chain length of both alcohols and acrylic esters, but the dielectric constant showed a reverse trend. A comparative study of the free energy of activation for the dielectric relaxation and viscous flow suggested that a greater interference by neighboring atom was observed in the process of viscous flow than in dielectric relaxation, as the latter involved rotational form of motion, whereas the viscous flow involved both rotational and translational forms of motion.
文摘Oxalic acid was found to be an efficient catalyst for Pechmann condensation, which includes the reaction between phenols and β-keto esters leading to formation of coumarin derivatives. The advantages of present methods are the use of cheap and easy available catalyst, solvent-free reaction conditions, better yields and shorter reaction time.
文摘In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can extract Cu and/or Ni against Co from chloride medium solutions at pH range of 2.5-4.5. About 2g/l nickel and 0.2g/l copper were removed from the cobalt chloride anolyte containing about 100g/l cobalt and 200g/l chloride ions respectively, the raffinate contains nickel and copper less than 0.03g/l and 0.0003g/l respectively and can be used to electrolyze high-purity cobalt. About 5.5t cobalt anolyte was purified in the simulation industrial experiment and kilogram quantities of cobalt of 99.98% purity and about 95% recovery have been produced.