This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element...Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimati...This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.展开更多
A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information to...A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.展开更多
The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is propose...The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.展开更多
This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of th...This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.展开更多
This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) d...This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.展开更多
A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated usi...A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated using the conventional spatial spectrum estimation method, then the noise and uncorrelated sources in Toeplitz structure are eliminated using differencing, finally by exploiting the property of oblique projection, the contributions of correlated sources are then eliminated from the covariance matrix and only the coherent sources remain. So the coherent sources can be estimated by the technique of modified spatial smoothing. The number of sources resolved by this approach can exceed the number of array elements without repeatedly estimating correlated sources. Simulation results demonstrate the effectiveness and efficiency of our proposed method.展开更多
This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeit...This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.展开更多
A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method ...A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.展开更多
The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing s...The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing speed. To solve this problem, a fast underwater acoustic target direction of arrival estimation was proposed. Analyzing the model characteristics of block-sparse Bayesian learning framework for DOA estimation, an algorithm was proposed to obtain the value of core hyper-parameter through MacKay's fixed-point method to estimate the DOA. By this process, it will spend less time for computation and provide more superior recovery performance than TMSBL algorithm. Simulation results verified the feasibility and effectiveness of the proposed algorithm.展开更多
The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the...In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.展开更多
The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel...The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel approach for the estimation of DOA in unknown correlated noise fields is proposed in this paper. The approach is based on the biorthogonality between a matrix and its Moore-Penrose pseudo inverse, and made no assumption on the spatial covariance matrix of the noise. The approach exploits the structural information of a set of spatio-temporal correlation matrices, and it can give a robust and precise estimation of signal subspace, so a precise estimation of DOA is obtained. Its performances are confirmed by computer simulation results.展开更多
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ...A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.展开更多
The concept of difference and sum co-array(DSCA)has become a new design idea for planar sparse arrays.Inspired by the shifting invariance property of DSCA,a specific configuration named here as the improved L-shaped a...The concept of difference and sum co-array(DSCA)has become a new design idea for planar sparse arrays.Inspired by the shifting invariance property of DSCA,a specific configuration named here as the improved L-shaped array is proposed.Compared to other traditional 2D sparse array configurations such as 2D nested arrays and hourglass arrays,the proposed configuration has larger central consecutive ranges in its DSCA,thus increasing the DOF.At the same time,the mutual coupling effect is also reduced due to the enlarged spacing between the adjacent sensors.Simulations further demonstrate the superiority of the proposed arrays in terms of detection performance and estimation accuracy.展开更多
A novel algorithm for DOA estimation using linear antenna array in the asynchronous DS-CDMA systems is presented in the presence of channel mismatches or signal fading between the sensors. Code-matched filters and par...A novel algorithm for DOA estimation using linear antenna array in the asynchronous DS-CDMA systems is presented in the presence of channel mismatches or signal fading between the sensors. Code-matched filters and parallel MUSIC algorithms are proposed to overcome the restriction that the number of array elements must exceeds the number of the sources for subspace-based direction of arrival. It can be shown that multiple access interference throughout the code-matched filter is asymptotically Gaussian in the asynchronous DS-CDMA systems. A relevant performance analysis is derived. Computer simulation proved the efficiency of the proposed algorithm.展开更多
The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed...The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
文摘Parallel arrays with coprime subarrays have shown its potential advantages for two dimensional direction of arrival(DOA)estimation.In this paper,by introducing two flexible coprime factors to enlarge the inter-element spacing of parallel uniform subarrays,we propose a generalized parallel coprime array(GPCA)geometry.The proposed geometry enjoys flexible array layouts by the coprime factors and enables to extend the array aperture to achieve great improvement of estimation performance.Meanwhile,we verify that GPCA always can obtain M2 degrees of freedom(DOFs)in co-array domain via 2M sensors after optimization,which outperforms sparse parallel array geometries,such as parallel coprime array(PCA)and parallel augmented coprime array(PACA),and is the same as parallel nested array(PNA)with extended aperture.The superiority of GPCA geometry has been proved by numerical simulations with sparse representation methods.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
基金supported by the National Natural Science Foundations of China (Nos.61371169,61601167, 61601504)the Natural Science Foundation of Jiangsu Province (No.BK20161489)+1 种基金the Open Research Fund of State Key Laboratory of Millimeter Waves, Southeast University (No. K201826)the Fundamental Research Funds for the Central Universities (No. NE2017103)
文摘This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.
文摘A linear array of diversely polarized antennas with one pair of identical sensors is used to obtain closed-form unambiguous estimation of 2-D direction of arrival (DOA) and polarization. Spatial phase information together with weighted 3-D polarization-angular coherence structure (PACS) are first recovered with fourth-order cumulants manipulation via a new 2-D ESPRIT variant. Spatial filtering is performed to obtain the scaled PACS, from which the closed-form 2-D DOA and polarization estimates can be derived with only quadrant ambiguity involved. The undesired quadrant ambiguity can be further resolved by using the acquired estimate of spatial phase factor.
基金supported by the National Science Foundation of China (No.61371169)the Aeronautical Science Foundation of China(No.20120152001)
文摘The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.
文摘This paper develops a deep estimator framework of deep convolution networks(DCNs)for super-resolution direction of arrival(DOA)estimation.In addition to the scenario of correlated signals,the quantization errors of the DCN are the major challenge.In our deep estimator framework,one DCN is used for spectrum estimation with quantization errors,and the remaining two DCNs are used to estimate quantization errors.We propose training our estimator using the spatial sampled covariance matrix directly as our deep estimator’s input without any feature extraction operation.Then,we reconstruct the original spatial spectrum from the spectrum estimate and quantization errors estimate.Also,the feasibility of the proposed deep estimator is analyzed in detail in this paper.Once the deep estimator is appropriately trained,it can recover the correlated signals’spatial spectrum fast and accurately.Simulation results show that our estimator performs well in both resolution and estimation error compared with the state-of-the-art algorithms.
文摘This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.
基金supported by the National Natural Science Foundation of China(60601016).
文摘A novel direction of arrival (DOA) estimation method is proposed when uncorrelated, correlated, and coherent sources coexist under color noise field. The uncorrelated and correlated sources are firstly estimated using the conventional spatial spectrum estimation method, then the noise and uncorrelated sources in Toeplitz structure are eliminated using differencing, finally by exploiting the property of oblique projection, the contributions of correlated sources are then eliminated from the covariance matrix and only the coherent sources remain. So the coherent sources can be estimated by the technique of modified spatial smoothing. The number of sources resolved by this approach can exceed the number of array elements without repeatedly estimating correlated sources. Simulation results demonstrate the effectiveness and efficiency of our proposed method.
文摘This paper proposes low-cost yet high-accuracy direction of arrival(DOA)estimation for the automotive frequency-modulated continuous-wave(FMcW)radar.The existing subspace-based DOA estimation algorithms suffer fromeither high computational costs or low accuracy.We aim to solve such contradictory relation between complexity and accuracy by using randomizedmatrix approximation.Specifically,we apply an easily-interpretablerandomized low-rank approximation to the covariance matrix(CM)and R∈C^(M×M)throughthresketch maties in the fom of R≈OBQ^(H).Here the approximately compute its subspaces.That is,we first approximate matrix Q∈C^(M×z)contains the orthonormal basis for the range of the sketchmatrik C∈C^(M×z)cwe whichis etrated fom R using randomized unifom counsampling and B∈C^(z×z)is a weight-matrix reducing the approximation error.Relying on such approximation,we are able to accelerate the subspacecomputation by the orders of the magnitude without compromising estimation accuracy.Furthermore,we drive a theoretical error bound for the suggested scheme to ensure the accuracy of the approximation.As validated by the simulation results,the DOA estimation accuracy of the proposed algorithm,eficient multiple signal classification(E-MUSIC)s high,closely tracks standardMUSIC,and outperforms the well-known algorithms with tremendouslyreduced time complexity.Thus,the devised method can realize high-resolutionreal-time target detection in the emerging multiple input and multiple output(MIMO)automotive radar systems.
基金supported by the National Natural Science Foundation of China(61301211)and the Aviation Science Foundation(20131852028)
文摘A 2D-direction of arrival estimation (DOAE) for multi input and multi-output (MIMO) radar using improved multiple temporal-spatial subspaces in estimating signal parameters via rotational invariance techniques method (TS-ESPRIT) is introduced. In order to realize the improved TS-ESPRIT, the proposed algorithm divides the planar array into multiple uniform sub-planar arrays with common reference point to get a unified phase shifts measurement point for all sub-arrays. The TS-ESPRIT is applied to each sub-array separately, and in the same time with the others to realize the parallelly temporal and spatial processing, so that it reduces the non-linearity effect of model and decreases the computational time. Then, the time difference of arrival (TDOA) technique is applied to combine the multiple sub-arrays in order to form the improved TS-ESPRIT. It is found that the proposed method achieves high accuracy at a low signal to noise ratio (SNR) with low computational complexity, leading to enhancement of the estimators performance.
基金supported by the National Natural Science Foundation of China(11574120,U1636117)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing,Ministry of Education,China(UASP1503)+1 种基金the Natural Science Foundation of Jiangsu Province of China(BK20161359)Foundation of Key Laboratory of Underwater Acoustic Warfare Technology of China and Qing Lan Project
文摘The Direction of Arrival (DOA) estimation methods for underwater acoustic target using Temporally Multiple Sparse Bayesian Learning (TMSBL) as the reconstructing algorithm have the disadvantage of slow computing speed. To solve this problem, a fast underwater acoustic target direction of arrival estimation was proposed. Analyzing the model characteristics of block-sparse Bayesian learning framework for DOA estimation, an algorithm was proposed to obtain the value of core hyper-parameter through MacKay's fixed-point method to estimate the DOA. By this process, it will spend less time for computation and provide more superior recovery performance than TMSBL algorithm. Simulation results verified the feasibility and effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (61971217, 61601167)Jiangsu Planned Project for Postdoctoral Research Funds (2020Z013)+2 种基金China Postdoctoral Science Foundation (2020M681585)the fund of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System (CEMEE 2021Z0101B)the fund of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University)(MRUKF2021033)。
文摘In this paper, a low complexity direction of arrival(DOA) estimation method for massive uniform circular array(UCA) with single snapshot is proposed.Firstly, the coarse DOAs are estimated by finding the peaks from the circular convolution between a fixed coefficient vector and the received data vector.Thereafter, in order to refine coarse DOA estimates, we reconstruct the direction matrix based on the coarse DOA estimations and take the first order Taylor expansion with DOA estimation offsets into account.Finally, the refined estimations are obtained by compensating the offsets, which are obtained via least squares(LS) without any complex searches.In addition, the refinement can be iteratively implemented to enhance the estimation results.Compared to the offset search method, the proposed method achieves a better estimation performance while requiring lower complexity.Numerical simulations are presented to demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.60372049)
文摘The key of the subspace-based Direction Of Arrival (DOA) estimation lies in the estimation of signal subspace with high quality. In the case of uncorrelated signals while the signals are temporally correlated, a novel approach for the estimation of DOA in unknown correlated noise fields is proposed in this paper. The approach is based on the biorthogonality between a matrix and its Moore-Penrose pseudo inverse, and made no assumption on the spatial covariance matrix of the noise. The approach exploits the structural information of a set of spatio-temporal correlation matrices, and it can give a robust and precise estimation of signal subspace, so a precise estimation of DOA is obtained. Its performances are confirmed by computer simulation results.
基金supported by the National Natural Science Foundation of China(6127130061405150)
文摘A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61801024)。
文摘The concept of difference and sum co-array(DSCA)has become a new design idea for planar sparse arrays.Inspired by the shifting invariance property of DSCA,a specific configuration named here as the improved L-shaped array is proposed.Compared to other traditional 2D sparse array configurations such as 2D nested arrays and hourglass arrays,the proposed configuration has larger central consecutive ranges in its DSCA,thus increasing the DOF.At the same time,the mutual coupling effect is also reduced due to the enlarged spacing between the adjacent sensors.Simulations further demonstrate the superiority of the proposed arrays in terms of detection performance and estimation accuracy.
基金Supported by the National Defence Pre-Research Foundation
文摘A novel algorithm for DOA estimation using linear antenna array in the asynchronous DS-CDMA systems is presented in the presence of channel mismatches or signal fading between the sensors. Code-matched filters and parallel MUSIC algorithms are proposed to overcome the restriction that the number of array elements must exceeds the number of the sources for subspace-based direction of arrival. It can be shown that multiple access interference throughout the code-matched filter is asymptotically Gaussian in the asynchronous DS-CDMA systems. A relevant performance analysis is derived. Computer simulation proved the efficiency of the proposed algorithm.
基金supported by the Open Research Fund of the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(No.CEMEE2019Z0104B)。
文摘The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.