Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the syste...Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.展开更多
A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential ...A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.展开更多
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles...Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.展开更多
Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg ...Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg and Smirina,1969).This method is based on counting the number of lines of arrested growth(LAGs)—cyclical growth marks that are usually formed annually and characterized by different optical aspects within the tubular bones.展开更多
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p...Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.展开更多
Since the inception of the optimal sequence estimation (OSE) method,various research teams have substantiated its efficacy as the optimal stacking technique for handling array data,leading to its successful applicatio...Since the inception of the optimal sequence estimation (OSE) method,various research teams have substantiated its efficacy as the optimal stacking technique for handling array data,leading to its successful application in numerous geoscience studies.Nevertheless,concerns persist regarding the potential impact of aliasing resulting from the choice of distinct station distributions on the outcomes derived from OSE.In this investigation,I employ theoretical deduction and experimental analysis to elucidate the reasons behind the immunity of the Y_(l'm')-related common signal obtained through OSE to variations in station distribution selection.The primary objective of OSE is also underscored,i.e.,to restore/strip a Y_(l'm')-related common periodic signal from various stations.Furthermore,I provide additional clarification that the‘Y_(l'm')-related common signal’and the‘Y_(l'm')-related equivalent excitation sequence’are distinct concepts.These analyses will facilitate the utilization of the OSE technique by other researchers in investigating intriguing geophysical phenomena and attaining sound explanations.展开更多
Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.I...Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.展开更多
Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely...Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.展开更多
Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incrementa...Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incremental Curve Analysis(ICA)andWhale Optimization Algorithm-Radial Basis Function(WOA-RBF)neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries.Firstly,preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage(Q-V)curve,convert the Q-V curve into an IC curve and denoise it,analyze the parameters in the IC curve that may serve as health features;Then,extract the constant current charging time of the battery and the horizontal and vertical coordinates of the two IC peaks as health features,and perform correlation analysis using Pearson correlation coefficient method;Finally,theWOA-RBF algorithmwas used to estimate the battery SOH,and the training results of LSTM,RBF,and PSO-RBF algorithms were compared.The conclusion was drawn that theWOA-RBF algorithm has high accuracy,fast convergence speed,and the best linearity in estimating SOH.The absolute error of its SOHestimation can be controlled within 1%,and the relative error can be controlled within 2%.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number i...The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o...The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.展开更多
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co...The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.展开更多
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is math...This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金This work was supported by the National Natural Science Foundation of China(Grant No.62071248)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)China Postdoctoral Science Foundation(Grant No.2022M721693).
文摘Quantum physics is primarily concerned with real eigenvalues,stemming from the unitarity of time evolutions.With the introduction of PT symmetry,a widely accepted consensus is that,even if the Hamiltonian of the system is not Hermitian,the eigenvalues can still be purely real under specific symmetry.Hence,great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems.In this work,from a distinct perspective,we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates.Consequently,our findings provide another path to extract the real energy spectrum of non-Hermitian systems,which guarantees the conservation of probability and stimulates future experimental observations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52171251,U2106225,and 52231011)Dalian Science and Technology Innovation Fund (Grant No.2022JJ12GX036)。
文摘A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2500703)Science and Technology Department Program of Jilin Province of China(Grant No.20230101121JC).
文摘Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states.
基金supported by the research project of Russian Science Foundation N 22-14-00227.
文摘Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg and Smirina,1969).This method is based on counting the number of lines of arrested growth(LAGs)—cyclical growth marks that are usually formed annually and characterized by different optical aspects within the tubular bones.
基金supported in part by the National Natural Science Foundation of China(Nos.42271448,41701531)the Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNRG202317)。
文摘Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.
基金supported by the National Natural Science Foundation of China (Grants:42388102,42192533,and 42192531)the Fundamental Research Funds for the Central Universities (Grant:2042023kfyq01)the Project Supported by the Special Fund of Hubei Luojia Laboratory (Grant:220100002)。
文摘Since the inception of the optimal sequence estimation (OSE) method,various research teams have substantiated its efficacy as the optimal stacking technique for handling array data,leading to its successful application in numerous geoscience studies.Nevertheless,concerns persist regarding the potential impact of aliasing resulting from the choice of distinct station distributions on the outcomes derived from OSE.In this investigation,I employ theoretical deduction and experimental analysis to elucidate the reasons behind the immunity of the Y_(l'm')-related common signal obtained through OSE to variations in station distribution selection.The primary objective of OSE is also underscored,i.e.,to restore/strip a Y_(l'm')-related common periodic signal from various stations.Furthermore,I provide additional clarification that the‘Y_(l'm')-related common signal’and the‘Y_(l'm')-related equivalent excitation sequence’are distinct concepts.These analyses will facilitate the utilization of the OSE technique by other researchers in investigating intriguing geophysical phenomena and attaining sound explanations.
基金supported by the National Natural Science Foundation of China(No.U1839209).
文摘Wave propagation in horizontally layered media is a classical problem in seismic-wave theory.In semi-infinite space,a nondispersive Rayleigh wave mode exists,and the eigendisplacement decays exponentially with depth.In a layered model with increasing layer velocity,the phase velocity of the Rayleigh wave varies between the S-wave velocity of the bottom half-space and that of the classical Rayleigh wave propagated in a supposed half-space formed by the parameters of the top layer.If the phase velocity is the same as the P-or S-wave velocity of the layer,which is called the critical mode or critical phase velocity of surface waves,the general solution of the wave equation is not a homogeneous(expressed by trigonometric functions)or inhomogeneous(expressed by exponential functions)plane wave,but one whose amplitude changes linearly with depth(expressed by a linear function).Theories based on a general solution containing only trigonometric or exponential functions do not apply to the critical mode,owing to the singularity at the critical phase velocity.In this study,based on the classical framework of generalized reflection and transmission coefficients,the propagation of surface waves in horizontally layered media was studied by introducing a solution for the linear function at the critical phase velocity.Therefore,the eigenvalues and eigenfunctions of the critical mode can be calculated by solving a singular problem.The eigendisplacement characteristics associated with the critical phase velocity were investigated for different layered models.In contrast to the normal mode,the eigendisplacement associated with the critical phase velocity exhibits different characteristics.If the phase velocity is equal to the S-wave velocity in the bottom half-space,the eigendisplacement remains constant with increasing depth.
基金supported by the National Natural Science Foundation of China(52130801,U20A20312,52178271,and 52077213)the National Key Research and Development Program of China(2021YFF0500903)。
文摘Identifying workers’construction activities or behaviors can enable managers to better monitor labor efficiency and construction progress.However,current activity analysis methods for construction workers rely solely on manual observations and recordings,which consumes considerable time and has high labor costs.Researchers have focused on monitoring on-site construction activities of workers.However,when multiple workers are working together,current research cannot accu rately and automatically identify the construction activity.This research proposes a deep learning framework for the automated analysis of the construction activities of multiple workers.In this framework,multiple deep neural network models are designed and used to complete worker key point extraction,worker tracking,and worker construction activity analysis.The designed framework was tested at an actual construction site,and activity recognition for multiple workers was performed,indicating the feasibility of the framework for the automated monitoring of work efficiency.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,grant number 22KJD470002.
文摘Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incremental Curve Analysis(ICA)andWhale Optimization Algorithm-Radial Basis Function(WOA-RBF)neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries.Firstly,preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage(Q-V)curve,convert the Q-V curve into an IC curve and denoise it,analyze the parameters in the IC curve that may serve as health features;Then,extract the constant current charging time of the battery and the horizontal and vertical coordinates of the two IC peaks as health features,and perform correlation analysis using Pearson correlation coefficient method;Finally,theWOA-RBF algorithmwas used to estimate the battery SOH,and the training results of LSTM,RBF,and PSO-RBF algorithms were compared.The conclusion was drawn that theWOA-RBF algorithm has high accuracy,fast convergence speed,and the best linearity in estimating SOH.The absolute error of its SOHestimation can be controlled within 1%,and the relative error can be controlled within 2%.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金funded by Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘The direction-of-arrival(DoA) estimation is one of the hot research areas in signal processing. To overcome the DoA estimation challenge without the prior information about signal sources number and multipath number in millimeter wave system,the multi-task deep residual shrinkage network(MTDRSN) and transfer learning-based convolutional neural network(TCNN), namely MDTCNet, are proposed. The sampling covariance matrix based on the received signal is used as the input to the proposed network. A DRSN-based multi-task classifications model is first introduced to estimate signal sources number and multipath number simultaneously. Then, the DoAs with multi-signal and multipath are estimated by the regression model. The proposed CNN is applied for DoAs estimation with the predicted number of signal sources and paths. Furthermore, the modelbased transfer learning is also introduced into the regression model. The TCNN inherits the partial network parameters of the already formed optimization model obtained by the CNN. A series of experimental results show that the MDTCNet-based DoAs estimation method can accurately predict the signal sources number and multipath number under a range of signal-to-noise ratios. Remarkably, the proposed method achieves the lower root mean square error compared with some existing deep learning-based and traditional methods.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.
文摘The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.
基金Supported by the National Natural Science Foundation of China(12101004)the Natural Science Research Project of Anhui Educational Committee(2023AH030021)the Research Startup Foundation for Introducing Talent of Anhui Polytechnic University(2020YQQ064)。
文摘The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金supported in part by the National Natural Science Foundation of China under Grant 52105079 and 62103455。
文摘This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.