期刊文献+
共找到397篇文章
< 1 2 20 >
每页显示 20 50 100
Fast Remaining Capacity Estimation for Lithium-ion Batteries Based on Short-time Pulse Test and Gaussian Process Regression 被引量:1
1
作者 Aihua Ran Ming Cheng +7 位作者 Shuxiao Chen Zheng Liang Zihao Zhou Guangmin Zhou Feiyu Kang Xuan Zhang Baohua Li Guodan Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期238-246,共9页
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr... It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity. 展开更多
关键词 capacity estimation data-driven method Gaussian process regression lithium-ion battery pulse tests
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
2
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-ion batteries Battery Construction Battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (soc) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach
3
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
下载PDF
Fuzzy Model for Estimation of the State-of-Charge of Lithium-Ion Batteries for Electric Vehicles 被引量:4
4
作者 胡晓松 孙逢春 程夕明 《Journal of Beijing Institute of Technology》 EI CAS 2010年第4期416-421,共6页
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was appli... A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications. 展开更多
关键词 state of charge(soc lithium-ion battery fuzzy identification Gustafson-Kessel(GK) clustering electric vehicle
下载PDF
Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
5
作者 Qingguang Qi Wenxue Liu +3 位作者 Zhongwei Deng Jinwen Li Ziyou Song Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期605-618,共14页
Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using... Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis. 展开更多
关键词 Electricvehicle lithium-ion battery pack Capacity estimation Machine learning Field data
下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves
6
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 lithium-ion battery Partial charging curves Capacity estimation DATA-DRIVEN Sampling frequency
下载PDF
Rapid health estimation of in-service battery packs based on limited labels and domain adaptation
7
作者 Zhongwei Deng Le Xu +3 位作者 Hongao Liu Xiaosong Hu Bing Wang Jingjing Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期345-354,I0009,共11页
For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing m... For large-scale in-service electric vehicles(EVs)that undergo potential maintenance,second-hand transactions,and retirement,it is crucial to rapidly evaluate the health status of their battery packs.However,existing methods often rely on lengthy battery charging/discharging data or extensive training samples,which hinders their implementation in practical scenarios.To address this issue,a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper.First,a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees.Then,increment capacity sequences(△Q)within a short voltage span are extracted from charging process to indicate battery health.Furthermore,data-driven models based on deep convolutional neural network(DCNN)are constructed to estimate battery state of health(SOH),where the synthetic data is employed to pre-train the models,and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability.Finally,field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods.By using the△Q with 100 m V voltage change,the SOH of battery packs can be accurately estimated with an error around 3.2%. 展开更多
关键词 lithium-ion battery Electric vehicles Health estimation Feature extraction Convolutional neural network Domain adapatation
下载PDF
A hierarchical enhanced data-driven battery pack capacity estimation framework for real-world operating conditions with fewer labeled data
8
作者 Sijia Yang Caiping Zhang +4 位作者 Haoze Chen Jinyu Wang Dinghong Chen Linjing Zhang Weige Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期417-432,共16页
Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.Ho... Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology. 展开更多
关键词 lithium-ion battery pack Capacity estimation Label generation Multi-machine learning model Real-world operating
下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:3
9
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 lithium-ion batteries Physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
Robust state of charge estimation of lithium-ion battery via mixture kernel mean p-power error loss LSTM with heap-based-optimizer
10
作者 Wentao Ma Yiming Lei +1 位作者 Xiaofei Wang Badong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期768-784,I0016,共18页
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi... The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively. 展开更多
关键词 soc estimation Long short term memory model Mixture kernel mean p-power error Heap-based-optimizer lithium-ion battery Non-Gaussian noisy measurement data
下载PDF
A Nonlinear Observer Approach of SOC Estimation Based on Hysteresis Model for Lithium-ion Battery 被引量:8
11
作者 Yan Ma Bingsi Li +2 位作者 Guangyuan Li Jixing Zhang Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期195-204,共10页
In this paper, a state of charge(SOC) estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability(ISS) theory has been proposed. According to the electrochemical perf... In this paper, a state of charge(SOC) estimation approach for lithium-ion battery based on equivalent circuit model and the input-to-state stability(ISS) theory has been proposed. According to the electrochemical performance of lithiumion battery, the equivalent circuit model with two RC networks is established, which includes hysteresis characteristic in inner electrochemical response process. The nonlinear relation between open circuit voltage(OCV) and SOC is obtained from a rapid test. Exponential fitting method is used to identify the parameters of the model. A novel state observer based on ISS theory is designed for lithium-ion battery SOC estimation. The designed observer is tested on AMESim and Simulink co-simulation. The simulation results show that the proposed method has a high SOC estimation accuracy with an error of about 2 percent. 展开更多
关键词 AMESIM hysteresis model input-to-state stability (ISS) observer lithium-ion battery state of charge(soc)
下载PDF
Letter to the Editor Re “Fractional Modeling and SOC Estimation of Lithium-ion Battery”
12
作者 Rahat Hasan Jonathan Scott 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期644-644,共1页
A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].T... A Recent paper by Ma et al.,claims to estimate the state of charge of Lithium-ion batteries with a fractionalorder impedance model including a Warburg and a constant phase element(CPE)with a maximum error of 0.5%[1].The proposed equivalent circuit model from[1]is reproduced in Fig.1. 展开更多
关键词 Fractional Modeling and soc estimation of lithium-ion Battery Letter to the Editor Re
下载PDF
温度自适应SMO算法估计锂离子电池的SOC
13
作者 吕高 樊郭宇 +2 位作者 张嘉蕾 杜君莉 史书怀 《电池》 CAS 北大核心 2024年第3期334-339,共6页
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式... 现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析。温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低0.3~0.5个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在2%左右,常温25℃工况下误差低于1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考。 展开更多
关键词 荷电状态(soc)估计 滑模观测(SMO) 温度影响 锂离子电池 半实物实验分析
下载PDF
Review of lithium-ion battery state of charge estimation 被引量:5
14
作者 Ning Li Yu Zhang +4 位作者 Fuxing He Longhui Zhu Xiaoping Zhang Yong Ma Shuning Wang 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期619-630,共12页
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging... The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized. 展开更多
关键词 lithium-ion battery Battery model Parameter identification State of charge estimation
下载PDF
Boosting battery state of health estimation based on self-supervised learning
15
作者 Yunhong Che Yusheng Zheng +1 位作者 Xin Sui Remus Teodorescu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期335-346,共12页
State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to ac... State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios. 展开更多
关键词 lithium-ion battery State of health Battery aging Self-supervised learning Prognostics and health management Data-driven estimation
下载PDF
适用于无人水下潜航器电池管理系统的SOC-SOH联合估计
16
作者 卢地华 周胜增 陈自强 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期1080-1090,共11页
为了提高无人水下潜航器(UUV)电池管理系统状态的估计精度,提出荷电状态-健康状态(SOC-SOH)联合估计方法.搭建测试台架,采用4组锂离子电池进行全寿命周期下的充放电测试,获取不同老化程度下的特性数据.经理论推导和实验分析设计四维表... 为了提高无人水下潜航器(UUV)电池管理系统状态的估计精度,提出荷电状态-健康状态(SOC-SOH)联合估计方法.搭建测试台架,采用4组锂离子电池进行全寿命周期下的充放电测试,获取不同老化程度下的特性数据.经理论推导和实验分析设计四维表征因子,建立基于改进支持向量回归(SVR)的SOH估计模型.探究电池状态的耦合关系,建立基于扩展卡尔曼滤波(EKF)的SOC估计模型,采用遗忘因子递推最小二乘算法(RLS)更新模型参数,利用SOH对SOC估计结果进行修正.通过不同工况的实验进行验证,结果表明:四维表征因子和电池容量相关性好,SOH估计模型精度高,SOC估计模型精度在联合修正后得到提升.所提的联合估计方法具有较高的通用性和可靠性,可以作为有效的嵌入式电池管理系统状态估计算法. 展开更多
关键词 无人潜航器(UUV) 锂离子电池 soc-SOH联合估计 扩展卡尔曼滤波(EKF) 支持向量回归(SVR)
下载PDF
基于等效电路与数据驱动模型的锂离子动力电池SOC估计技术
17
作者 张志 白书华 +2 位作者 何柏青 黄金亮 张文展 《科技创新与应用》 2024年第13期78-81,共4页
该文以二阶等效电路模型作为电池工作特性描述模型,分别利用无迹卡尔曼滤波算法、基于Sage-Husa自适应滤波思想的SR-AUKF算法估算锂电池的SOC值,对不同初始值条件下、不同噪声方差下2种算法的SOC估计及绝对误差曲线进行对比分析。而后... 该文以二阶等效电路模型作为电池工作特性描述模型,分别利用无迹卡尔曼滤波算法、基于Sage-Husa自适应滤波思想的SR-AUKF算法估算锂电池的SOC值,对不同初始值条件下、不同噪声方差下2种算法的SOC估计及绝对误差曲线进行对比分析。而后在数据驱动模型下,在单独利用门控循环单元神经网络算法估算SOC后,再将之与无迹卡尔曼滤波算法组合应用,对不同工况及温度条件下2种算法的SOC估计结果及绝对误差进行比对,得到等效电路模型、数据驱动模型下锂离子动力电池SOC估计的最佳算法。 展开更多
关键词 等效电路模型 数据驱动模型 锂离子动力电池 soc估计 绝对误差曲线
下载PDF
基于AFEKF的锂离子电池SOC估算方法
18
作者 刘光军 吴思齐 +1 位作者 张恒 邓洲 《沈阳工业大学学报》 CAS 北大核心 2024年第3期318-323,共6页
针对利用扩展卡尔曼滤波算法估算锂电池荷电状态时,由于历史数据影响易产生累积误差的问题,提出了一种基于自适应渐消扩展卡尔曼的SOC估算方法。选用Thevenin等效模型并用递推最小二乘法进行电池参数辨识,通过将自适应渐消因子引入EKF... 针对利用扩展卡尔曼滤波算法估算锂电池荷电状态时,由于历史数据影响易产生累积误差的问题,提出了一种基于自适应渐消扩展卡尔曼的SOC估算方法。选用Thevenin等效模型并用递推最小二乘法进行电池参数辨识,通过将自适应渐消因子引入EKF算法中,抑制历史数据对当前状态估算的影响,完成锂电池SOC估算。结果表明:AFEKF算法在递推20次时可有效收敛,具有较好鲁棒性,估算SOC的平均误差为1.03%,误差均方根为1.21%,平均运行时间为1.476 s,可以较好地模拟电池的动静态特性。 展开更多
关键词 锂离子电池 荷电状态 卡尔曼滤波 soc估算 估算方法 EKF算法 最小二乘法 自适应
下载PDF
基于ASSA-RBF联合算法的三元锂离子电池SOC估计
19
作者 刘齐 吴松荣 +3 位作者 邓鸿枥 张翰文 付聪 柳博 《电子测量技术》 北大核心 2024年第1期71-78,共8页
准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对... 准确估计三元锂电池的荷电状态(SOC)是保障电动汽车安全稳定运行的基础。针对传统BP神经网络估计精度不高,而RBF神经网络也容易陷入局部最优的问题,提出一种基于自适应麻雀搜索算法与RBF神经网络联合的三元锂电池SOC估计方法。首先,对标准麻雀搜索算法进行改进,采用精英混沌反向机制初始化麻雀种群,采用柯西-高斯变异策略优化麻雀种群中跟随者位置更新公式;然后,使用改进后的麻雀搜索算法对RBF神经网络的初始权值和宽度参数进行寻优,以提升算法对SOC的估计精度;最后,基于三元锂电池的充放电实验数据进行模型验证。结果表明,动态应力测试工况下,所提联合算法模型SOC估计均方根误差为0.694%,平均百分比误差为3.15%,能很好的应用于三元锂电池SOC估计。 展开更多
关键词 三元锂电池 soc估计 RBF神经网络 自适应麻雀搜索算法
下载PDF
LSTM-EKF算法实现储能集装箱电芯SOC的优化估计
20
作者 刘巨 任羽纶 +6 位作者 易柏年 董哲 余轶 熊志 余紫荻 王映祺 刘健 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第2期198-206,共9页
储能集装箱是锂电池储能电站的核心设备,每个集装箱由数千只电芯串并联构成。因此,对集装箱电芯锂电池荷电状态(state of charge,SOC)的准确估计成为表征储能电站运行最核心最基础的参数,并且为辅助新能源高效并网,储能系统的工作状态... 储能集装箱是锂电池储能电站的核心设备,每个集装箱由数千只电芯串并联构成。因此,对集装箱电芯锂电池荷电状态(state of charge,SOC)的准确估计成为表征储能电站运行最核心最基础的参数,并且为辅助新能源高效并网,储能系统的工作状态也会相应地呈现随机性、波动性和不确定性,这对电芯状态估计的准确度提出了更高的要求。为此,首先基于基尔霍夫定律建立Thevenin电池模型,根据安时积分法列出系统的状态和观测方程,并且将其状态和观测方程作为扩展卡尔曼滤波(extended Kalman filtering,EKF)算法的研究对象。然后利用EKF算法对估计值电池SOC更新迭代,再将EKF算法中得到的卡尔曼矩阵和状态变量更新误差值以及UDDS工况下的电池数据,作为长短期记忆(long short-term memory,LSTM)神经网络算法的训练数据集,由此完成LSTM-EKF联合算法,实现对储能集装箱电芯SOC的优化估计。该文所提LSTM-EKF算法可将电芯SOC的误差值降低到1%以下。最后对优化算法在储能电站安全运行与监控平台中的应用情况进行介绍。 展开更多
关键词 储能集装箱 锂电池soc 扩展卡尔曼滤波 长短期记忆神经网络 优化估计
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部