The 10-GW-class Jiuquan Wind Power Base in Gansu Province is to get its Phase I Project completed soon, and will further expand and become the world largest wind power base in the future. Whether electricity from the ...The 10-GW-class Jiuquan Wind Power Base in Gansu Province is to get its Phase I Project completed soon, and will further expand and become the world largest wind power base in the future. Whether electricity from the wind power base can be delivered on such a large scale becomes the focus of attention of the world. This paper analyzes four challenges facing the wind power base, including transmission capability, peak regulation and frequency modulation, capacity balance and generation accommodation, as well as system stability.展开更多
As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these ...As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these wind farms may vary around hundreds of MW,and most of the wind farms are connected to long transmission cables whose impedances can not be ignored and require careful attention.Several works have investigated the impedance interaction between the DFIG based wind farm and long transmission cables which may unfortunately cause high frequency resonance(HFR).The main contribution of this paper is to investigate the influence of the variable wind farm capacity on the behavior of the HFR when certain transmission cables are provided.It is found out that the potential HFR may happen in certain wind farms,and the larger wind farm capacity causes more severe HFR due to the relatively weaker grid transmission capability.Simulation results based on Matlab/Simulink are given to validate the analysis of HFR.展开更多
The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of el...The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of electrical grid balancing services such as frequency-response services.In order to project the feasibility of co-locating a hydrogen-storage system with a wind farm for the dynamic regulation frequency-response provision in Great Britain,this paper develops a modelling framework to coordinate the wind export and frequency responses to the main grid and manage the interaction of the electrolyser,compressor,storage tank and fuel cell within the hydrogen-storage system by respecting the market mechanisms and the balance and conversion of power and hydrogen flows.Then the revenue of frequency-response service provision and a variety of costs induced by the hydrogen-storage system are translated into the net profit of the co-location system,which is maximized by optimizing the capacities of hydrogen-storage-system components,hydrogen-storage levels that guide the hydrogen restoration via operational baselines and the power interchange between a wind-farm and hydrogen-storage system,as well as the capacities tendered for low-and high-frequency dynamic regulation services.The developed modelling framework is tested based on a particular 432-MW offshore wind farm in Great Britain combined with the techno-economics of electrolysers and fuel cells projected for 2030 and 2050 scenarios.The optimized system configuration and operation are compared between different operating scenarios and discussed alongside the prospect of applying hydrogen-storage systems for frequency-response provision.展开更多
针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电...针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电网扰动下,直流电容能相应地吸收或释放能量。两端VSC交流系统频率通过风场侧换流器(wind farm VSC,WFVSC)的变频控制实现人工耦合,可以省去两端换流站之间的通信。为响应WFVSC的频率变化,风电机组功率控制器将调整功率指令值,使转子转速相应变化。通过一系列协同控制,海上风电场将参与电力系统频率控制。在允许的风电机组转速和直流电压变化范围内,该协同控制策略可提供大范围的惯量,增加系统稳定性。通过对负荷变化、风速变化和交流系统故障等工况的仿真,验证所提控制策略的有效性。展开更多
文摘The 10-GW-class Jiuquan Wind Power Base in Gansu Province is to get its Phase I Project completed soon, and will further expand and become the world largest wind power base in the future. Whether electricity from the wind power base can be delivered on such a large scale becomes the focus of attention of the world. This paper analyzes four challenges facing the wind power base, including transmission capability, peak regulation and frequency modulation, capacity balance and generation accommodation, as well as system stability.
文摘As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these wind farms may vary around hundreds of MW,and most of the wind farms are connected to long transmission cables whose impedances can not be ignored and require careful attention.Several works have investigated the impedance interaction between the DFIG based wind farm and long transmission cables which may unfortunately cause high frequency resonance(HFR).The main contribution of this paper is to investigate the influence of the variable wind farm capacity on the behavior of the HFR when certain transmission cables are provided.It is found out that the potential HFR may happen in certain wind farms,and the larger wind farm capacity causes more severe HFR due to the relatively weaker grid transmission capability.Simulation results based on Matlab/Simulink are given to validate the analysis of HFR.
文摘The continuous development of hydrogen-electrolyser and fuel-cell technologies not only reduces their investment and operating costs but also improves their technical performance to meet fast-acting requirements of electrical grid balancing services such as frequency-response services.In order to project the feasibility of co-locating a hydrogen-storage system with a wind farm for the dynamic regulation frequency-response provision in Great Britain,this paper develops a modelling framework to coordinate the wind export and frequency responses to the main grid and manage the interaction of the electrolyser,compressor,storage tank and fuel cell within the hydrogen-storage system by respecting the market mechanisms and the balance and conversion of power and hydrogen flows.Then the revenue of frequency-response service provision and a variety of costs induced by the hydrogen-storage system are translated into the net profit of the co-location system,which is maximized by optimizing the capacities of hydrogen-storage-system components,hydrogen-storage levels that guide the hydrogen restoration via operational baselines and the power interchange between a wind-farm and hydrogen-storage system,as well as the capacities tendered for low-and high-frequency dynamic regulation services.The developed modelling framework is tested based on a particular 432-MW offshore wind farm in Great Britain combined with the techno-economics of electrolysers and fuel cells projected for 2030 and 2050 scenarios.The optimized system configuration and operation are compared between different operating scenarios and discussed alongside the prospect of applying hydrogen-storage systems for frequency-response provision.
文摘针对海上风电场采用柔性直流输电(voltage source converter based high voltage DC,VSC-HVDC)接入陆上电网的技术方案,提出利用直流电容和风电机组转子动能去模拟同步发电机惯量的协同控制策略。通过网侧换流器直流电压滑差控制,在电网扰动下,直流电容能相应地吸收或释放能量。两端VSC交流系统频率通过风场侧换流器(wind farm VSC,WFVSC)的变频控制实现人工耦合,可以省去两端换流站之间的通信。为响应WFVSC的频率变化,风电机组功率控制器将调整功率指令值,使转子转速相应变化。通过一系列协同控制,海上风电场将参与电力系统频率控制。在允许的风电机组转速和直流电压变化范围内,该协同控制策略可提供大范围的惯量,增加系统稳定性。通过对负荷变化、风速变化和交流系统故障等工况的仿真,验证所提控制策略的有效性。