期刊文献+
共找到195,934篇文章
< 1 2 250 >
每页显示 20 50 100
Optimizing near-carbon-free nuclear energy systems:advances in reactor operation digital twin through hybrid machine learning algorithms for parameter identification and state estimation
1
作者 Li‑Zhan Hong He‑Lin Gong +3 位作者 Hong‑Jun Ji Jia‑Liang Lu Han Li Qing Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期177-203,共27页
Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,... Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices. 展开更多
关键词 Parameter identification State estimation Reactor operation digital twin Reduced order model Inverse problem
下载PDF
Two-Staged Method for Ice Channel Identification Based on Image Segmentation and Corner Point Regression 被引量:1
2
作者 DONG Wen-bo ZHOU Li +2 位作者 DING Shi-feng WANG Ai-ming CAI Jin-yan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期313-325,共13页
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ... Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second. 展开更多
关键词 ice channel ship navigation identification image segmentation corner point regression
下载PDF
Deep learning for joint channel estimation and feedback in massive MIMO systems 被引量:1
3
作者 Jiajia Guo Tong Chen +3 位作者 Shi Jin Geoffrey Ye Li Xin Wang Xiaolin Hou 《Digital Communications and Networks》 SCIE CSCD 2024年第1期83-93,共11页
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th... The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors. 展开更多
关键词 Channel estimation CSI feedback Deep learning Massive MIMO FDD
下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
4
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation DATA-DRIVEN Sampling frequency
下载PDF
Dynamic Hand Gesture-Based Person Identification Using Leap Motion and Machine Learning Approaches 被引量:1
5
作者 Jungpil Shin Md.AlMehedi Hasan +2 位作者 Md.Maniruzzaman Taiki Watanabe Issei Jozume 《Computers, Materials & Continua》 SCIE EI 2024年第4期1205-1222,共18页
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f... Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security. 展开更多
关键词 Person identification leap motion hand gesture random forest support vector machine
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
6
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 Network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
Identification and evaluation of shale oil micromigration and its petroleum geological significance 被引量:2
7
作者 HU Tao JIANG Fujie +10 位作者 PANG Xiongqi LIU Yuan WU Guanyun ZHOU Kuo XIAO Huiyi JIANG Zhenxue LI Maowen JIANG Shu HUANG Liliang CHEN Dongxia MENG Qingyang 《Petroleum Exploration and Development》 SCIE 2024年第1期127-140,共14页
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil... Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale. 展开更多
关键词 shale oil micro-migration identification micro-migration evaluation Junggar Basin Mahu Sag Lower Permian Fengcheng Formation hydrocarbon expulsion potential method
下载PDF
Efficient Unsupervised Image Stitching Using Attention Mechanism with Deep Homography Estimation 被引量:1
8
作者 Chunbin Qin Xiaotian Ran 《Computers, Materials & Continua》 SCIE EI 2024年第4期1319-1334,共16页
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s... Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper. 展开更多
关键词 Unsupervised image stitching deep homography estimation YOLOv8 attention mechanism
下载PDF
Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections 被引量:1
9
作者 Qing Chaojin Rao Chuangui +2 位作者 Yang Na Tang Shuhai Wang Jiafan 《China Communications》 SCIE CSCD 2024年第6期87-102,共16页
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com... Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations. 展开更多
关键词 channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric
下载PDF
High-Precision Doppler Frequency Estimation Based Positioning Using OTFS Modulations by Red and Blue Frequency Shift Discriminator 被引量:1
10
作者 Shaojing Wang Xiaomei Tang +3 位作者 Jing Lei Chunjiang Ma Chao Wen Guangfu Sun 《China Communications》 SCIE CSCD 2024年第2期17-31,共15页
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple... Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler. 展开更多
关键词 channel estimation communication and navigation integration Orthogonal Time Frequency and Space pseudo-noise sequence red-blue frequency shift discriminator
下载PDF
Pollution source identification methods and remediation technologies of groundwater: A review
11
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 Groundwater pollution identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology Hydrogeological conditions Hydrogeological survey engineering
下载PDF
Model-driven full system dynamics estimation of PMSM-driven chain shell magazine
12
作者 Kai Wei Longmiao Chen Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期147-156,共10页
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro... Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals. 展开更多
关键词 Chain shell magazine Full system dynamics estimation Disturbance estimation Parameter estimation Adaptive extended state observer
下载PDF
DC-FIPD: Fraudulent IP Identification Method Based on Homology Detection
13
作者 Yuanyuan Ma Ang Chen +3 位作者 Cunzhi Hou Ruixia Jin Jinghui Zhang Ruixiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第11期3301-3323,共23页
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho... Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification. 展开更多
关键词 Fraudulent IP identification homology detection CLUSTERING genetic optimization algorithm telecom fraud identification
下载PDF
Side Information-Based Stealthy False Data Injection Attacks Against Multi-Sensor Remote Estimation
14
作者 Haibin Guo Zhong-Hua Pang Chao Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1054-1056,共3页
Dear Editor,This letter investigates a novel stealthy false data injection(FDI)attack scheme based on side information to deteriorate the multi-sensor estimation performance of cyber-physical systems(CPSs).Compared wi... Dear Editor,This letter investigates a novel stealthy false data injection(FDI)attack scheme based on side information to deteriorate the multi-sensor estimation performance of cyber-physical systems(CPSs).Compared with most existing works depending on the full system knowledge,this attack scheme is only related to attackers'sensor and physical process model.The design principle of the attack signal is derived to diverge the system estimation performance.Next,it is proven that the proposed attack scheme can successfully bypass the residual-based detector.Finally,all theoretical results are verified by numerical simulation. 展开更多
关键词 estimation SCHEME system
下载PDF
Protocol-Based Non-Fragile State Estimation for Delayed Recurrent Neural Networks Subject to Replay Attacks
15
作者 Fan Yang Hongli Dong +2 位作者 Yuxuan Shen Xuerong Li Dongyan Dai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期249-251,共3页
Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have ... Dear Editor, This letter focuses on the protocol-based non-fragile state estimation problem for a class of recurrent neural networks(RNNs). With the development of communication technology, the networked systems have received particular attentions. The networked system brings advantages such as easy to implement. 展开更多
关键词 NETWORK COMMUNICATION estimation
下载PDF
Brain age estimation:premise,promise,and problems
16
作者 Jarrad Perron Ji Hyun Ko 《Neural Regeneration Research》 SCIE CAS 2025年第8期2313-2314,共2页
Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,Sou... Premise:The com bined effects of modern healthcare practices which prolong lifespan and declining birthrates have created unprecedented changes in age demographics worldwide that are especially pronounced in Japan,South Korea,Europe,and North America.Since old age is the most significant predictor of dementia,global healthcare systems must rise to the challenge of providing care for those with neurodegenerative disorders. 展开更多
关键词 estimation providing BIRTH
下载PDF
State Estimation of Drive-by-Wire Chassis Vehicle Based on Dual Unscented Particle Filter Algorithm
17
作者 Zixu Wang Chaoning Chen +2 位作者 Quan Jiang Hongyu Zheng Chuyo Kaku 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期99-113,共15页
Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles... Accurate vehicle dynamic information plays an important role in vehicle driving safety.However,due to the characteristics of high mobility and multiple controllable degrees of freedom of drive-by-wire chassis vehicles,the current mature application of traditional vehicle state estimation algorithms can not meet the requirements of drive-by-wire chassis vehicle state estimation.This paper proposes a state estimation method for drive-by-wire chassis vehicle based on the dual unscented particle filter algorithm,which make full use of the known advantages of the four-wheel drive torque and steer angle parameters of the drive-by-wire chassis vehicle.In the dual unscented particle filter algorithm,two unscented particle filter transfer information to each other,observe the vehicle state information and the tire force parameter information of the four wheels respectively,which reduce the influence of parameter uncertainty and model parameter changes on the estimation accuracy during driving.The performance with the dual unscented particle filter algorithm,which is analyzed in terms of the time-average square error,is superior of the unscented Kalman filter algorithm.The effectiveness of the algorithm is further verified by driving simulator test.In this paper,a vehicle state estimator based on dual unscented particle filter algorithm was proposed for the first time to improve the estimation accuracy of vehicle parameters and states. 展开更多
关键词 Drive-by-wire chassis vehicle Vehicle state estimation Dual unscented particle filter Tire force estimation Unscented particle filter
下载PDF
Double-check in Lizard Age Estimation:Use of Phalanx Bone and Keratin Claw Sheath Lamellas
18
作者 Eduard GALOYAN Natalia SOPILKO +1 位作者 Anna KOVALYEVA Anna CHAMKINA 《Asian Herpetological Research》 SCIE CSCD 2024年第1期59-61,共3页
Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg ... Dear Editor,The problem of age estimation in amphibians and reptiles with annual fluctuations of growth pattern has been considered to be mostly solved since the skeletochronological method was introduced(Kleinenberg and Smirina,1969).This method is based on counting the number of lines of arrested growth(LAGs)—cyclical growth marks that are usually formed annually and characterized by different optical aspects within the tubular bones. 展开更多
关键词 estimation method usual
下载PDF
Molecular Identification of Mycobacterium Strains Responsible of Bovine Tuberculosis Cases in Bobo-Dioulasso Slaughterhouse, Burkina Faso
19
作者 Mariétou Konate Aminata Fofana# +2 位作者 Yacouba Kouadima Aboubacar Sidiki Ouattara Adama Sanou 《Advances in Microbiology》 CAS 2024年第2期105-114,共10页
Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are co... Bovine tuberculosis (bTB) is an endemic zoonosis significantly affects animal health in Burkina Faso. The primary causative agent is Mycobacterium tuberculosis (M. tuberculosis) complex, mainly M. bovis. Cattle are considered as natural reservoir of M. bovis. However, in Burkina Faso, the circulation of these strains remains poorly understood and documented. This study aimed to identify and characterize Mycobacterium strains from suspected carcasses during routine meat inspection at Bobo-Dioulasso refrigerated slaughterhouse. A prospective cross-sectional study was conducted from January 2021 to December 2022 on cases of seizures linked to suspected bovine tuberculosis. Microbiological and molecular analyzes were used for mycobacterial strain isolation and characterization. Out of 50 samples, 24% tested positive by microscopy and 12% by culture. Molecular analysis identified 6 strains of Mycobacteria, exclusively Mycobacterium bovis specifically the subspecies bovis (Mycobacterium bovis subsp bovis). In conclusion, M. bovis subsp bovis is the primary agent responsible for bovine tuberculosis in Bobo-Dioulasso. Continuous monitoring of mycobacterial strains is therefore necessary for the effective control of this pathology in the local cattle population. 展开更多
关键词 Bovine Tuberculosis Mycobacterium bovis Molecular identification Cattle Population Burkina Faso
下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
20
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile Adaptive control Parameter identification Quaternion control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部