Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex ster...Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients,including simple BPH patients,newly diagnosed T2DM patients,T2DM complicated with BPH patients and matched healthy individuals.The G protein-coupled estrogen receptor(GPER)inhibitor G15,GPER knockdown lentivirus,the YAP1 inhibitor verteporfin,YAP1 knockdown/overexpression lentivirus,targeted metabolomics analysis,and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH.The homeostasis of sex steroid hormone is disrupted in the serum of patients,accompanying with the proliferated prostatic epithelial cells(PECs).The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals.Elevated 17β-estradiol(E2)is the key contributor to the disrupted sex steroid hormone homeostasis,and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH.Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose(HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer.Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells.The anti-proliferative effects of verteporfin,an inhibitor of YAP1,are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells.Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.展开更多
The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2...The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2 databases, significant down-regulation of ESR1 expression is observed in LIHC samples compared to normal controls, indicating its potential role in tumor progression. Further analysis reveals consistent down-regulation across different clinical variables including patient age, gender, race, and various stages of LIHC, affirming the regulatory role of ESR1 in tumor development and progression. Additionally, promoter methylation analysis demonstrates hypermethylation of ESR1 in LIHC samples, negatively correlating with its expression. This association persists across different clinical parameters, emphasizing the inverse relationship between ESR1 methylation and expression levels. Survival analysis indicates that up- regulation of ESR1 is associated with better overall survival, suggesting its potential as a prognostic biomarker in LIHC. Furthermore, genetic mutation analysis using cBioPortal reveals a spectrum of alterations in ESR1, including amplification, missense mutation, deep deletion, splice mutation, and truncating mutation, highlighting the genetic complexity of ESR1 in LIHC. These findings collectively contribute to a deeper understanding of ESR1 dysregulation in LIHC and its clinical implications as a potential therapeutic target and prognostic marker.展开更多
AIM: To investigate the prognostic significance of estrogen receptor 1(ER1) and vascular endothelial growth factor A(VEGF-A) expression in primary gallbladder carcinoma(GBC) to identify new prognostic markers for this...AIM: To investigate the prognostic significance of estrogen receptor 1(ER1) and vascular endothelial growth factor A(VEGF-A) expression in primary gallbladder carcinoma(GBC) to identify new prognostic markers for this malignancy.METHODS: Using immunohistochemistry, we investigated ER1 and VEGF-A expression in 78 GBC and 78 cholelithiasis(CS) tissues. The results were correlated with clinicopathological features. Univariate and multivariate analyses were performed to evaluate the relationship between ER1 and VEGF-A expression and patients' prognosis. Further Kaplan-Meier survival analysis was also performed. RESULTS: ER1 and VEGF-A expression was significantly higher in GBC compared with CS(47/78 vs 28/78, P < 0.05; 51/78 vs 33/78, P < 0.05). ER1 expression was correlated with gender(P < 0.05) and VEGF-A expression was correlated with tumor differentiation in GBC patients(P < 0.05). In univariate analysis, age and tumor node metastasis(TNM) stage were factors associated with GBC prognosis(P < 0.05). Although there was no statistical difference between the expression of ER1 or VEGF-A and overall survival, the high expression of ER1 combined with VEGF-A predicted a poor prognosis for GBC patients(16.30 ± 1.87 vs 24.97 ± 2.09, log-rank P < 0.05). In multivariate analysis, combined expression of ER1 and VEGF-A and TNM stage were independent prognostic factors for GBC patients(P < 0.05).CONCLUSION: Combined expression of ER1 and VEGF-A is a potential prognostic marker for GBC patients. Clinical detection of ER1 and VEGF-A in surgically resected GBC tissues would provide animportant reference for decision-making of postoperative treatment programs.展开更多
The role of CyclinD1 and estrogen receptor (ER) in the process of proliferation and metastasis of breast neoplasm and their relationship were studied. The expression levels of CyclinD1 and ER in the tissue samples wer...The role of CyclinD1 and estrogen receptor (ER) in the process of proliferation and metastasis of breast neoplasm and their relationship were studied. The expression levels of CyclinD1 and ER in the tissue samples were detected by using flow cytometry and L SAB immunohistochemistry staining, respectively. The results showed that CyclinD1 and ER expression levels in breast cancer were significantly higher than in benign breast neoplasm (P<0.05). The CyclinD1 expression levels in stage I was much lower than in stages Ⅱ, Ⅲ, Ⅳ (P<0.05). The positive rate of ER was not related with tumor size, lymph node metastasis and TNM stage (P>0.05), but the CyclinD1 expression level in ER (+) group was significantly higher than in ER (-) group (P<0.05). It was concluded that CyclinD1 expression level might be obviously related with the proliferation and metastasis of breast neoplasm and ER.展开更多
Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells v...Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells via the estrogen receptor β (ERβ) and the cAMP-extracellular signal-regulated kinase (ERK1/2) pathway. Low levels (10-10-10-8 mol L-1) of 17β-estradiol increased cell number, but high levels (10-7-10-6 mol L-1) decreased it (P〈0.05). Sertoli cell number began to recover for an additional 24 h in the medium without 17β-estradiol (10-6 mol L-l) (P〉0.05). The effects of 17β-estradiol (10-9 mol L-1) peaked at the first 24 h (P〈0.05). 17β-estradiol activated ERK1/2 from 5 min to 24 h, but the activiy of ERK1/2 began to decrease after 4 h. Both PD98059 and U0126, two ERK inhibitors, blocked cell division (P〈0.05). 17β-estradiol (10-10-10-6 mol L-1) dose-dependently increased cAMP production (P 〈 0.05), and both 17β-estradiol (10-9 mol L-1) and forskolin, which increases cAMP levels, induced cell proliferation and activated ERK1/2 (P〈 0.05). Rp-cAMP, an antagonist of cAMP, blocked this 17β-estradiol activity (P〈 0.05). Two estrogen receptor antagonists, ICI 182780 and ERβ antagonist (ERβAnt), reduced Sertoli cell number, cAMP production and ERK1/2 activation (P〈 0.05), but ERaAnt did not (P〉 0.05). Therefore, 17β- estradiol mainly promotes pig Sertoli cell proliferation via ERβ to induce cAMP production and ERK activation to promote cell proliferation.展开更多
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in t...Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.展开更多
Estrogen plays an important role in regulating testicular Sertoli cell number. Furthermore, S-phase kinase-associated protein 2 (SKP2) plays a central role in mammalian cell cycle progression. The objective of this ...Estrogen plays an important role in regulating testicular Sertoli cell number. Furthermore, S-phase kinase-associated protein 2 (SKP2) plays a central role in mammalian cell cycle progression. The objective of this study was to determine whether 17β-estradiol can regulate the expression of SKP2, and the Sertoli cell cycle, via estrogen receptor β (ERβ), the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and extracellular signal-regulated kinase (ERK1/2) pathway. When cultured immature boar Sertoli cells were treated with 17β-estradiol, a time-dependent increase in SKP2 mRNA and protein level was observed by real-time PCR and Western blot, and 17β-estradiol activity peaked at 30 min. Treatment with ICI182780 and ERβ antagonist reduced 17β-estradiol-induced expression of SKP2 and proliferating cell nuclear antigen (PCNA), while increasing the protein concentration of p27kip1. However, the effect of ERa antagonist on these parameters was lower than that of ICI 182780 and ERβ. Forskolin had a similar effect as 17β-estradiol on the expression of SKP2, PCNA and p27kip1, Rp-cAMP, H-89 and U0126 treatment reduced 17β-estradiol-induced changes, while H-89 also inhibited ERK1/2 activation. Therefore, 17β-estradiol mainly regulates SKP2 mRNA and protein expression via ERβ-cAMP-PKA and ERK1/2 activation. SKP2 and PCNA expression were positively correlated, while increased SKP2 expression likely resulted in p27kip1 degradation.展开更多
High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 al...High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N' and N'') remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.展开更多
Coronary heart disease(CHD) continues to be the greatest mortality risk factor in the developed world. Estrogens are recognized to have great therapeutic potential to treat CHD and other cardiovascular diseases; howev...Coronary heart disease(CHD) continues to be the greatest mortality risk factor in the developed world. Estrogens are recognized to have great therapeutic potential to treat CHD and other cardiovascular diseases; however,a significant array of potentially debilitating side effects continues to limit their use. Moreover,recent clinical trials have indicated that long-term postmenopausal estrogen therapy may actually be detrimental to cardiovascular health. An exciting new development is the finding that the more recently discovered G-protein-coupled estrogen receptor(GPER) is expressed in coronary arteries-both in coronary endothelium and in smooth muscle within the vascular wall. Accumulating evidence indicates that GPER activation dilates coronary arteries and can also inhibit the prolif-eration and migration of coronary smooth muscle cells. Thus,selective GPER activation has the potential to increase coronary blood flow and possibly limit the debilitating consequences of coronary atherosclerotic disease. This review will highlight what is currently known regarding the impact of GPER activation on coronary arteries and the potential signaling mechanisms stimulated by GPER agonists in these vessels. A thorough understanding of GPER function in coronary arteries may promote the development of new therapies that would help alleviate CHD,while limiting the potentially dangerous side effects of estrogen therapy.展开更多
Risk of clinically significant prostate adenocarcinoma (CAP) varies worldwide,although there is a uniform prevalence of latent disease. A hormone-responsive tissue,the prostate possesses the metabolizing capacity to...Risk of clinically significant prostate adenocarcinoma (CAP) varies worldwide,although there is a uniform prevalence of latent disease. A hormone-responsive tissue,the prostate possesses the metabolizing capacity to biotransform a variety of environmental procarcinogens or endogenous hormones. Whether such metabolizing capacity or estrogen receptor (ER) status underlies these demographic differences in susceptibility to CaP remains unclear. With appropriate ethical permission,verified-benign tissues were obtained following transurethral resection of the prostate from a high-risk region (n = 12 UK-resident Caucasians) and a typically low-risk region (n = 14 India-resident Asians). Quantitative gene expression analysis was employed for cytochrome P450 (CYP)1B1,N-acetyltransferase (NAT)1,NAT2,catechol-O-methyl transferase ( COMT),sulfotransferase ( SULT) 1A1,ERα,ERβ and aromatase (CYP To quantify the presence or absence of CYP1B1,ERα or ERβ,and to identify ther in situ localization,immunohistochemistry was carried out. The two cohorts had reasonably well-matched serum levels of prostate-specific antigen or hormones. Expression levels for the candidate genes investigated were similar.However,clear differences in protein levels for CYP1B1 and ERβ were noted. Staining for CYP1B1 tended to be nuclear-associated in the basal glandular epithelial cells,and in UK-resident Caucasian tissues was present at a higher (P = 0.006) level compared with that from India-resident Asians. In contrast,a higher level of positive ERβ staining was noted in prostates from India-resident Asians. These study findings point to differences in metabolizing capacity and ER status in benign prostate tissues that might modulate susceptibility to the emergence of clinically significant CaP in demographically distinct populations.展开更多
OBJECTIVE To detect the underlying mechanism of time window for estrogen(E2)replacement treating cognitive decline.METHODS E2 begun 1 week after the ovariectomy(OVXST)or 3 months after the ovariectomy(OVXLT).Learning ...OBJECTIVE To detect the underlying mechanism of time window for estrogen(E2)replacement treating cognitive decline.METHODS E2 begun 1 week after the ovariectomy(OVXST)or 3 months after the ovariectomy(OVXLT).Learning and memory ability were examined by trace fear memory test and inhibitory avoidance test.LTP and LTD were detected by MED64.High throughput gene expression sequencing and microRNA(miR NA) sequencing were used to detecte the differently expressed genes between OVXSTand OVXLTafter estrogen treatment.RESULTS Subcutaneous injection of E2 improved fear memory formation in both 1 week after ovariectomy(OVXST) mice or 3 months after ovariectomy(OVXLT) mice.However,for fear memory extinction,facilitated by E2 in OVXSTmice,but impaired by E2 in OVXLTmice.Further researches showed in medial prefrontal cortex(mPFC),estrogen facilitates LTD in OVXSTmice but impairs LTD in OVXLTmice.Results of highthroughput sequencings of mR NA and miRNA in mPFC from sham,OVXSTmice,E2 treated OVXST mice,OVXLTmice,and E2 treated OVXLTmice indicated decreased miR-221-5 p expression in OVXLTmice compared with OVXSTmice.In OVXLT mice,miR-221-5 p could be further reduced by E2 treatment.Additionally,miR-221-5 p targeted neuralized E3 ubiquitin protein ligase 1 a/b(Neurl1 a/b) m RNA.Decreased miR-221-5 p will promotes cannabinoid receptor 1(CB1) ubiquitination through up-regulating Neurl1 a/b protein levels in E2 treated OVXLTmice,which disrupted the retrograde endocanabinoids system.Replenishing miR-221-5 p or treating with CB1 agonist rescued the fear extinction impairment in E2 treated OVXLTmice.CONCLUSION These results uncovered a epigenetic change after long term E2 responsible for failure of E2 improving cognitive performance in OVXLTmice,moreover miR-221-5 p and CB1 agonist as potential targets for prolonging the time window for E2 replacement therapy.展开更多
Estrogen receptor(ER)αis expressed in a subset of patient-derived acute myeloid leukemia(AML)cells,whereas Akt is predominantly expressed in most types of AML.Targeting AML with dual inhibitors is a novel approach to...Estrogen receptor(ER)αis expressed in a subset of patient-derived acute myeloid leukemia(AML)cells,whereas Akt is predominantly expressed in most types of AML.Targeting AML with dual inhibitors is a novel approach to combat the disease.Herein,we examined a novel small molecule,3-(4-isopropyl)benzylidene-8-ethoxy,6-methyl,chroman-4-one(SBL-060),capable of targeting AML cells by inhibiting ERαand Akt kinase.The chemical properties of SBL-060 were identified by proton nuclear magnetic resonance(^(1)H-NMR),^(13)C-NMR,and mass spectroscopy.In silico docking was performed using an automated protocol with AutoDock-VINA.THP-1 and HL-60 cell lines were differentiated using phorbol 12-myristate 13-acetate.ERαinhibition was assessed using ELISA.The MTT assay assessed cell viability.Flow cytometry was performed for cell cycle,apoptosis,and p-Akt analyses.Chemical analysis identified the compound as 3-(4-isopropyl)benzylidene-8-ethoxy,6-methyl,chroman-4-one,which showed high binding efficacy toward ER,with aΔG_(binding) score of−7.4 kcal/mol.SBL-060 inhibited ERα,exhibiting IC50 values of 448 and 374.3 nM in THP-1 and HL-60 cells,respectively.Regarding inhibited cell proliferation,GI50 values of SBL-060 were 244.1 and 189.9 nM for THP-1 and HL-60 cells,respectively.In addition,a dose-dependent increase in sub G_(0)/G_(1) phase cell cycle arrest and total apoptosis was observed after treatment with SBL-060 in both cell types.SBL-060 also dose-dependently increased the p-Akt-positive populations in both THP-1 and HL-60 cells.Our results indicate that SBL-060 has excellent efficacy against differentiated AML cell types by inhibiting ER and Akt kinase,warranting further preclinical evaluations.展开更多
Neurotensin (NT) is a 13-amino acid peptide with trophic effects on some neoplasms. Its bioactivities are mainly mediated by neurotensin receptor 1 (NTSR1). Both NT and NTSR1 were found to be upregulated in breast can...Neurotensin (NT) is a 13-amino acid peptide with trophic effects on some neoplasms. Its bioactivities are mainly mediated by neurotensin receptor 1 (NTSR1). Both NT and NTSR1 were found to be upregulated in breast cancer. NT/NTSR1 thus becomes a potential therapeutic target. We studied whether any correlation exists between the expression of NTSR1 in breast carcinomas and the expression of ER, PR, and Her2. A total 85 cases of invasive ductal (62) and lobular (23) breast carcinomas were studied. Based on their ER/PR profiles, the ductal carcinomas (DCs) were subcategorized into ER+/PR+ (21), ER+/PR﹣ (20), and ER﹣/PR﹣ (21). All of the lobular carcinomas (LCs) were ER+/PR+. 21.57% of all DCs and 5.56% of LCs were Her2 positive. 77.78% of ER﹣/PR﹣ DCs were also Her2 negative (triple negative). The expression of NTSR1 was detected by immunohistochemistry and was semiquantitated (as negative, 1+, 2+, 3+). Both 2+ and 3+ were collectively defined as overexpression. The expression of NTSR1 was weak and focal in non-neoplastic mammary epithelial cells. It is increased in 74.19% of DCs (80.95% in ER+/PR+, 75% in ER+/PR﹣, and 66.67% in ER﹣/PR﹣ group), and in 95.65% of LCs. The overexpression of NTSR1 is similar between ER+ DCs and ER﹣ DCs (75% vs 66.67%, p > 0.05) as well as between PR+ DCs and PR﹣ DCs (80.95% in ER+/PR+ DCs vs 75% in ER+/PR﹣ DCs, p > 0.05). And it was seen in 77.78% of Her2+ DCs, 78.38% of Her2﹣ DCs, 94.12% of Her2﹣ LCs, and 78.57% of triple negative DCs. Overall, NTSR1 is commonly overexpressed in both ductal and lobular breast carcinomas and is independent of the ER/PR/Her2 profiles of the tumors. The present data supports the potential benefit of developing NTSR1 blockers in the adjuvant therapy of breast carcinomas, particularly for those “triple negative” tumors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82073906 and 82273987)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,and Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant Nos.:KYCX22-2966 and KYCX23-2967).
文摘Benign prostatic hyperplasia(BPH)is one of the major chronic complications of type 2 diabetes mellitus(T2DM),and sex steroid hormones are common risk factors for the occurrence of T2DM and BPH.The profiles of sex steroid hormones are simultaneously quantified by LC-MS/MS in the clinical serum of patients,including simple BPH patients,newly diagnosed T2DM patients,T2DM complicated with BPH patients and matched healthy individuals.The G protein-coupled estrogen receptor(GPER)inhibitor G15,GPER knockdown lentivirus,the YAP1 inhibitor verteporfin,YAP1 knockdown/overexpression lentivirus,targeted metabolomics analysis,and Co-IP assays are used to investigate the molecular mechanisms of the disrupted sex steroid hormones homeostasis in the pathological process of T2DM complicated with BPH.The homeostasis of sex steroid hormone is disrupted in the serum of patients,accompanying with the proliferated prostatic epithelial cells(PECs).The sex steroid hormone metabolic profiles of T2DM patients complicated with BPH have the greatest degrees of separation from those of healthy individuals.Elevated 17β-estradiol(E2)is the key contributor to the disrupted sex steroid hormone homeostasis,and is significantly positively related to the clinical characteristics of T2DM patients complicated with BPH.Activating GPER by E2 via Hippo-YAP1 signaling exacerbates high glucose(HG)-induced PECs proliferation through the formation of the YAP1-TEAD4 heterodimer.Knockdown or inhibition of GPER-mediated Hippo-YAP1 signaling suppresses PECs proliferation in HG and E2 co-treated BPH-1 cells.The anti-proliferative effects of verteporfin,an inhibitor of YAP1,are blocked by YAP1 overexpression in HG and E2 co-treated BPH-1 cells.Inactivating E2/GPER/Hippo/YAP1 signaling may be effective at delaying the progression of T2DM complicated with BPH by inhibiting PECs proliferation.
文摘The study investigates the expression pattern and regulatory mechanisms of estrogen receptor 1 (ESR1) in liver hepatocellular carcinoma (LIHC) through comprehensive bioinformatics analysis. Utilizing UALCAN and GEPIA2 databases, significant down-regulation of ESR1 expression is observed in LIHC samples compared to normal controls, indicating its potential role in tumor progression. Further analysis reveals consistent down-regulation across different clinical variables including patient age, gender, race, and various stages of LIHC, affirming the regulatory role of ESR1 in tumor development and progression. Additionally, promoter methylation analysis demonstrates hypermethylation of ESR1 in LIHC samples, negatively correlating with its expression. This association persists across different clinical parameters, emphasizing the inverse relationship between ESR1 methylation and expression levels. Survival analysis indicates that up- regulation of ESR1 is associated with better overall survival, suggesting its potential as a prognostic biomarker in LIHC. Furthermore, genetic mutation analysis using cBioPortal reveals a spectrum of alterations in ESR1, including amplification, missense mutation, deep deletion, splice mutation, and truncating mutation, highlighting the genetic complexity of ESR1 in LIHC. These findings collectively contribute to a deeper understanding of ESR1 dysregulation in LIHC and its clinical implications as a potential therapeutic target and prognostic marker.
基金Supported by National Natural Science Foundation of China,No.81272644 and No.81201549
文摘AIM: To investigate the prognostic significance of estrogen receptor 1(ER1) and vascular endothelial growth factor A(VEGF-A) expression in primary gallbladder carcinoma(GBC) to identify new prognostic markers for this malignancy.METHODS: Using immunohistochemistry, we investigated ER1 and VEGF-A expression in 78 GBC and 78 cholelithiasis(CS) tissues. The results were correlated with clinicopathological features. Univariate and multivariate analyses were performed to evaluate the relationship between ER1 and VEGF-A expression and patients' prognosis. Further Kaplan-Meier survival analysis was also performed. RESULTS: ER1 and VEGF-A expression was significantly higher in GBC compared with CS(47/78 vs 28/78, P < 0.05; 51/78 vs 33/78, P < 0.05). ER1 expression was correlated with gender(P < 0.05) and VEGF-A expression was correlated with tumor differentiation in GBC patients(P < 0.05). In univariate analysis, age and tumor node metastasis(TNM) stage were factors associated with GBC prognosis(P < 0.05). Although there was no statistical difference between the expression of ER1 or VEGF-A and overall survival, the high expression of ER1 combined with VEGF-A predicted a poor prognosis for GBC patients(16.30 ± 1.87 vs 24.97 ± 2.09, log-rank P < 0.05). In multivariate analysis, combined expression of ER1 and VEGF-A and TNM stage were independent prognostic factors for GBC patients(P < 0.05).CONCLUSION: Combined expression of ER1 and VEGF-A is a potential prognostic marker for GBC patients. Clinical detection of ER1 and VEGF-A in surgically resected GBC tissues would provide animportant reference for decision-making of postoperative treatment programs.
文摘The role of CyclinD1 and estrogen receptor (ER) in the process of proliferation and metastasis of breast neoplasm and their relationship were studied. The expression levels of CyclinD1 and ER in the tissue samples were detected by using flow cytometry and L SAB immunohistochemistry staining, respectively. The results showed that CyclinD1 and ER expression levels in breast cancer were significantly higher than in benign breast neoplasm (P<0.05). The CyclinD1 expression levels in stage I was much lower than in stages Ⅱ, Ⅲ, Ⅳ (P<0.05). The positive rate of ER was not related with tumor size, lymph node metastasis and TNM stage (P>0.05), but the CyclinD1 expression level in ER (+) group was significantly higher than in ER (-) group (P<0.05). It was concluded that CyclinD1 expression level might be obviously related with the proliferation and metastasis of breast neoplasm and ER.
基金supported by the National Natural Science Foundation of China(30270955)the Foundamental Research Funds for the Central Universities,China(XDJK2009B035)
文摘Estrogen plays an important role in regulating Sertoli cell number in the testis. The objective of the study was to identify whether 17β-estradiol affected the proliferation of cultured, immature boar Sertoli cells via the estrogen receptor β (ERβ) and the cAMP-extracellular signal-regulated kinase (ERK1/2) pathway. Low levels (10-10-10-8 mol L-1) of 17β-estradiol increased cell number, but high levels (10-7-10-6 mol L-1) decreased it (P〈0.05). Sertoli cell number began to recover for an additional 24 h in the medium without 17β-estradiol (10-6 mol L-l) (P〉0.05). The effects of 17β-estradiol (10-9 mol L-1) peaked at the first 24 h (P〈0.05). 17β-estradiol activated ERK1/2 from 5 min to 24 h, but the activiy of ERK1/2 began to decrease after 4 h. Both PD98059 and U0126, two ERK inhibitors, blocked cell division (P〈0.05). 17β-estradiol (10-10-10-6 mol L-1) dose-dependently increased cAMP production (P 〈 0.05), and both 17β-estradiol (10-9 mol L-1) and forskolin, which increases cAMP levels, induced cell proliferation and activated ERK1/2 (P〈 0.05). Rp-cAMP, an antagonist of cAMP, blocked this 17β-estradiol activity (P〈 0.05). Two estrogen receptor antagonists, ICI 182780 and ERβ antagonist (ERβAnt), reduced Sertoli cell number, cAMP production and ERK1/2 activation (P〈 0.05), but ERaAnt did not (P〉 0.05). Therefore, 17β- estradiol mainly promotes pig Sertoli cell proliferation via ERβ to induce cAMP production and ERK activation to promote cell proliferation.
基金supported by the Youth Shihezi University Applied Basic Research Project of China,No.2015ZRKYQ-LH19
文摘Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
基金grants from the National Natural Science Foundation of China(31072183)the Fundamental Research Funds for the Central Universities,China(XDJK2009B035)
文摘Estrogen plays an important role in regulating testicular Sertoli cell number. Furthermore, S-phase kinase-associated protein 2 (SKP2) plays a central role in mammalian cell cycle progression. The objective of this study was to determine whether 17β-estradiol can regulate the expression of SKP2, and the Sertoli cell cycle, via estrogen receptor β (ERβ), the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and extracellular signal-regulated kinase (ERK1/2) pathway. When cultured immature boar Sertoli cells were treated with 17β-estradiol, a time-dependent increase in SKP2 mRNA and protein level was observed by real-time PCR and Western blot, and 17β-estradiol activity peaked at 30 min. Treatment with ICI182780 and ERβ antagonist reduced 17β-estradiol-induced expression of SKP2 and proliferating cell nuclear antigen (PCNA), while increasing the protein concentration of p27kip1. However, the effect of ERa antagonist on these parameters was lower than that of ICI 182780 and ERβ. Forskolin had a similar effect as 17β-estradiol on the expression of SKP2, PCNA and p27kip1, Rp-cAMP, H-89 and U0126 treatment reduced 17β-estradiol-induced changes, while H-89 also inhibited ERK1/2 activation. Therefore, 17β-estradiol mainly regulates SKP2 mRNA and protein expression via ERβ-cAMP-PKA and ERK1/2 activation. SKP2 and PCNA expression were positively correlated, while increased SKP2 expression likely resulted in p27kip1 degradation.
文摘High mobility group protein 1(HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome(N) in a nonenzymatic,adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor(ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes(N' and N'') remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed(1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and(2) knock down of HMGB1 expression by siR NA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.
基金Supported by The American Heart Association,Texas Affiliate,No.7370061the Center for Chronic Disorders of Aging,PCOM
文摘Coronary heart disease(CHD) continues to be the greatest mortality risk factor in the developed world. Estrogens are recognized to have great therapeutic potential to treat CHD and other cardiovascular diseases; however,a significant array of potentially debilitating side effects continues to limit their use. Moreover,recent clinical trials have indicated that long-term postmenopausal estrogen therapy may actually be detrimental to cardiovascular health. An exciting new development is the finding that the more recently discovered G-protein-coupled estrogen receptor(GPER) is expressed in coronary arteries-both in coronary endothelium and in smooth muscle within the vascular wall. Accumulating evidence indicates that GPER activation dilates coronary arteries and can also inhibit the prolif-eration and migration of coronary smooth muscle cells. Thus,selective GPER activation has the potential to increase coronary blood flow and possibly limit the debilitating consequences of coronary atherosclerotic disease. This review will highlight what is currently known regarding the impact of GPER activation on coronary arteries and the potential signaling mechanisms stimulated by GPER agonists in these vessels. A thorough understanding of GPER function in coronary arteries may promote the development of new therapies that would help alleviate CHD,while limiting the potentially dangerous side effects of estrogen therapy.
文摘Risk of clinically significant prostate adenocarcinoma (CAP) varies worldwide,although there is a uniform prevalence of latent disease. A hormone-responsive tissue,the prostate possesses the metabolizing capacity to biotransform a variety of environmental procarcinogens or endogenous hormones. Whether such metabolizing capacity or estrogen receptor (ER) status underlies these demographic differences in susceptibility to CaP remains unclear. With appropriate ethical permission,verified-benign tissues were obtained following transurethral resection of the prostate from a high-risk region (n = 12 UK-resident Caucasians) and a typically low-risk region (n = 14 India-resident Asians). Quantitative gene expression analysis was employed for cytochrome P450 (CYP)1B1,N-acetyltransferase (NAT)1,NAT2,catechol-O-methyl transferase ( COMT),sulfotransferase ( SULT) 1A1,ERα,ERβ and aromatase (CYP To quantify the presence or absence of CYP1B1,ERα or ERβ,and to identify ther in situ localization,immunohistochemistry was carried out. The two cohorts had reasonably well-matched serum levels of prostate-specific antigen or hormones. Expression levels for the candidate genes investigated were similar.However,clear differences in protein levels for CYP1B1 and ERβ were noted. Staining for CYP1B1 tended to be nuclear-associated in the basal glandular epithelial cells,and in UK-resident Caucasian tissues was present at a higher (P = 0.006) level compared with that from India-resident Asians. In contrast,a higher level of positive ERβ staining was noted in prostates from India-resident Asians. These study findings point to differences in metabolizing capacity and ER status in benign prostate tissues that might modulate susceptibility to the emergence of clinically significant CaP in demographically distinct populations.
文摘OBJECTIVE To detect the underlying mechanism of time window for estrogen(E2)replacement treating cognitive decline.METHODS E2 begun 1 week after the ovariectomy(OVXST)or 3 months after the ovariectomy(OVXLT).Learning and memory ability were examined by trace fear memory test and inhibitory avoidance test.LTP and LTD were detected by MED64.High throughput gene expression sequencing and microRNA(miR NA) sequencing were used to detecte the differently expressed genes between OVXSTand OVXLTafter estrogen treatment.RESULTS Subcutaneous injection of E2 improved fear memory formation in both 1 week after ovariectomy(OVXST) mice or 3 months after ovariectomy(OVXLT) mice.However,for fear memory extinction,facilitated by E2 in OVXSTmice,but impaired by E2 in OVXLTmice.Further researches showed in medial prefrontal cortex(mPFC),estrogen facilitates LTD in OVXSTmice but impairs LTD in OVXLTmice.Results of highthroughput sequencings of mR NA and miRNA in mPFC from sham,OVXSTmice,E2 treated OVXST mice,OVXLTmice,and E2 treated OVXLTmice indicated decreased miR-221-5 p expression in OVXLTmice compared with OVXSTmice.In OVXLT mice,miR-221-5 p could be further reduced by E2 treatment.Additionally,miR-221-5 p targeted neuralized E3 ubiquitin protein ligase 1 a/b(Neurl1 a/b) m RNA.Decreased miR-221-5 p will promotes cannabinoid receptor 1(CB1) ubiquitination through up-regulating Neurl1 a/b protein levels in E2 treated OVXLTmice,which disrupted the retrograde endocanabinoids system.Replenishing miR-221-5 p or treating with CB1 agonist rescued the fear extinction impairment in E2 treated OVXLTmice.CONCLUSION These results uncovered a epigenetic change after long term E2 responsible for failure of E2 improving cognitive performance in OVXLTmice,moreover miR-221-5 p and CB1 agonist as potential targets for prolonging the time window for E2 replacement therapy.
文摘Estrogen receptor(ER)αis expressed in a subset of patient-derived acute myeloid leukemia(AML)cells,whereas Akt is predominantly expressed in most types of AML.Targeting AML with dual inhibitors is a novel approach to combat the disease.Herein,we examined a novel small molecule,3-(4-isopropyl)benzylidene-8-ethoxy,6-methyl,chroman-4-one(SBL-060),capable of targeting AML cells by inhibiting ERαand Akt kinase.The chemical properties of SBL-060 were identified by proton nuclear magnetic resonance(^(1)H-NMR),^(13)C-NMR,and mass spectroscopy.In silico docking was performed using an automated protocol with AutoDock-VINA.THP-1 and HL-60 cell lines were differentiated using phorbol 12-myristate 13-acetate.ERαinhibition was assessed using ELISA.The MTT assay assessed cell viability.Flow cytometry was performed for cell cycle,apoptosis,and p-Akt analyses.Chemical analysis identified the compound as 3-(4-isopropyl)benzylidene-8-ethoxy,6-methyl,chroman-4-one,which showed high binding efficacy toward ER,with aΔG_(binding) score of−7.4 kcal/mol.SBL-060 inhibited ERα,exhibiting IC50 values of 448 and 374.3 nM in THP-1 and HL-60 cells,respectively.Regarding inhibited cell proliferation,GI50 values of SBL-060 were 244.1 and 189.9 nM for THP-1 and HL-60 cells,respectively.In addition,a dose-dependent increase in sub G_(0)/G_(1) phase cell cycle arrest and total apoptosis was observed after treatment with SBL-060 in both cell types.SBL-060 also dose-dependently increased the p-Akt-positive populations in both THP-1 and HL-60 cells.Our results indicate that SBL-060 has excellent efficacy against differentiated AML cell types by inhibiting ER and Akt kinase,warranting further preclinical evaluations.
文摘Neurotensin (NT) is a 13-amino acid peptide with trophic effects on some neoplasms. Its bioactivities are mainly mediated by neurotensin receptor 1 (NTSR1). Both NT and NTSR1 were found to be upregulated in breast cancer. NT/NTSR1 thus becomes a potential therapeutic target. We studied whether any correlation exists between the expression of NTSR1 in breast carcinomas and the expression of ER, PR, and Her2. A total 85 cases of invasive ductal (62) and lobular (23) breast carcinomas were studied. Based on their ER/PR profiles, the ductal carcinomas (DCs) were subcategorized into ER+/PR+ (21), ER+/PR﹣ (20), and ER﹣/PR﹣ (21). All of the lobular carcinomas (LCs) were ER+/PR+. 21.57% of all DCs and 5.56% of LCs were Her2 positive. 77.78% of ER﹣/PR﹣ DCs were also Her2 negative (triple negative). The expression of NTSR1 was detected by immunohistochemistry and was semiquantitated (as negative, 1+, 2+, 3+). Both 2+ and 3+ were collectively defined as overexpression. The expression of NTSR1 was weak and focal in non-neoplastic mammary epithelial cells. It is increased in 74.19% of DCs (80.95% in ER+/PR+, 75% in ER+/PR﹣, and 66.67% in ER﹣/PR﹣ group), and in 95.65% of LCs. The overexpression of NTSR1 is similar between ER+ DCs and ER﹣ DCs (75% vs 66.67%, p > 0.05) as well as between PR+ DCs and PR﹣ DCs (80.95% in ER+/PR+ DCs vs 75% in ER+/PR﹣ DCs, p > 0.05). And it was seen in 77.78% of Her2+ DCs, 78.38% of Her2﹣ DCs, 94.12% of Her2﹣ LCs, and 78.57% of triple negative DCs. Overall, NTSR1 is commonly overexpressed in both ductal and lobular breast carcinomas and is independent of the ER/PR/Her2 profiles of the tumors. The present data supports the potential benefit of developing NTSR1 blockers in the adjuvant therapy of breast carcinomas, particularly for those “triple negative” tumors.