期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Variations of suspended sediment transport caused by changes in shoreline and bathymetry in the Zhujiang(Pearl)River Estuary in the wet season
1
作者 Shicheng Lin Jianwei Niu +2 位作者 Guangping Liu Xing Wei Shuqun Cai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期54-73,共20页
A wave-current-sediment coupled numerical model is employed to study the responses of suspended sediment transport in the wet season to changes in shoreline and bathymetry in the Zhujiang(Pearl)River Estuary(ZRE)from ... A wave-current-sediment coupled numerical model is employed to study the responses of suspended sediment transport in the wet season to changes in shoreline and bathymetry in the Zhujiang(Pearl)River Estuary(ZRE)from 1971 to 2012.It is shown that,during the wavy period,the large wave-induced bottom stress enhances sediment resuspension,resulting in an increase in the area of suspended sediment concentration(SSC)greater than 100 mg/L by 183.4%.On one hand,in spring tide,the change in shoreline reduces the area of SSC greater than 100 mg/L by 17.8%in the west shoal(WS)but increases the SSC,owing to the closer sediment source to the offshore and the stronger residual current at the Hengmeng(HEM)and Hongqili(HQL)outlets.The eastward Eulerian transport is enhanced in the WS and west channel(WC),resulting in a higher SSC there.The reclamation of Longxue Island(LXI)increases SSC on its east side and east shoal(ES)but decreases the SSC on its west and south sides.Moreover,in the WC,the estuarine turbidity maximum(ETM)is located near the saltwater wedge and moves southward,which is caused by the southward movement of the maximum longitudinal Eulerian transport.In neap tide,the changes are similar but relatively weaker.On the other hand,in spring tide,the change in bathymetry makes the SSC in the WS increase,and the area of SSC greater than 100 mg/L increases by 11.4%and expands eastward and southward,which is caused by the increases in wave-induced bottom stress and eastward Eulerian transport.On the east side of the WC,the eastward Eulerian transport decreases significantly,resulting in a smaller SSC in the middle shoal(MS).In addition,in the WC,the maximum SSC is reduced,which is caused by the smaller wave-induced bottom stress and a significant increase of 109.88%in southward Eulerian transport.The results in neap tide are similar to those in spring tide but with smaller changes,and the sediment transports northward in the WC owing to the northward Eulerian transport and vertical shear transport.This study may provide some references for marine ecological environment security and coastal management in the ZRE and other estuaries worldwide affected by strong human interventions. 展开更多
关键词 suspended sediment concentration wave bottom stress estuarine turbidity maximum numerical model Zhujiang(Pearl)River Estuary
下载PDF
Sources and implications of particulate organic matter from a small tropical river——Zuari River, India
2
作者 Dearlyn Fernandes Ying Wu +2 位作者 Prabhaker Vasant Shirodkar Umesh Kumar Pradhan Jing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第4期18-32,共15页
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key compo... Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers. 展开更多
关键词 Zuari River estuarine turbidity maximum(ETM) suspended particulate matter(SPM) organic matter(OM) amino acids(AA) degradation index(DI)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部