期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Spatiotemporal Dynamics of Coastal Wetlands and Reclamation in the Yangtze Estuary During Past 50 Years(1960s–2015) 被引量:14
1
作者 CHEN Lin REN Chunying +3 位作者 ZHANG Bai LI Lin WANG Zongming SONG Kaishan 《Chinese Geographical Science》 SCIE CSCD 2018年第3期386-399,共14页
Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring ... Reclamation is one of the fastest-growing land use type developed in coastal areas and has caused degradation and loss of coastal wetlands as well as serious environmental problems. This paper was aimed at monitoring the spatiotemporal patterns of coastal wetlands and reclamation in the Yangtze Estuary during the 1960s and 2015. Satellite images obtained from 1980 to 2015 and topography maps of the 1960 s were employed to extract changes of reclamation and coastal wetlands. Area-weight centroids were calculated to identify the movement trend of reclamation and coastal wetlands. The results show that from the 1960 s to 2015, the net area of natural wetlands declined by 574.3 km^2, while man-made wetlands and reclamation increased by 553.6 and 543.9 km^2, respectively. During the five study phases, the fastest areal change rate natural wetlands was –13.3 km^2/yr in the period of 1990–2000, and that of man-made areas was 24.7 km^2/yr in the same period, and the areal change rate of reclamation was 27.6 km^2/yr in the period of 2000–2010. Conversion of coastal wetlands mainly occurred in the Chongming Island, Changshu City and the east coast of Shanghai Municipality. Reclamation was common across coastal areas, and was mainly attributed to settlement and man-made wetlands in the Chongming Island, Lianyungang City and the east coast of Shanghai Municipality. Natural wetlands turned into farmlands and settlement, and man-made wetlands gained from reclamation of farmlands. The centroid of natural wetlands generally moved towards the sea, man-made wetlands expanded equally in all directions and inland, and the centroid of reclamation migrated toward Shanghai Municipality. Sea level rise, erosion-deposition changes, and reclamation activities together determine the dynamics of the Yangtze Estuary wetlands. However, reclamation activities for construction of ports, industries and aquaculture are the key causes for the dynamics. The results from this study on the dynamics of coastal wetlands and reclamation are valuable for local government to put forward sustainable land use and land development plans. 展开更多
关键词 coastal wetlands reclamation remote sensing dynamics driving forces the Yangtze estuary
下载PDF
Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary,China 被引量:11
2
作者 WANG Lili YE Mei +2 位作者 LI Qusheng ZOU Hang ZHOU Yongsheng 《Chinese Geographical Science》 SCIE CSCD 2013年第5期574-583,共10页
Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang (Pearl) River estuary wetland were investigated. Results showed that the total phosphorus (TP) content in surface sediments ... Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang (Pearl) River estuary wetland were investigated. Results showed that the total phosphorus (TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg; inorganic phosphorus (IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg. Among the inorganic phosphorus, the main fractions were phosphorus bound to A1 and Fe (Fe/A1-P), and calcium-bound phosphorus (Ca-P), accounting for 23%-42% and 21%-67% of IP, respectively. The vertical distribution of TP contents were significantly positive correlated with organic phosphorus (Org-P) and Fe/A1-P contents. The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg, mainly existed in Fe-AI/P fraction, and increased from the bottom to top sediments. The transport of phosphorus in sediment-water in- terface was controlled by the soil characteristics. The active Fe and A1 content was considered as the main factor that determines adsorp- tion capacity in vegetated marsh wetland. The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland. The potential risk of eutrophication in the study area is high. Reducing terrestrial phosphorus discharge and preventing the sediment Fe/A1-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands, and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment. 展开更多
关键词 estuary wetland PHOSPHORUS FRACTION ADSORPTION-DESORPTION
下载PDF
Investigation on Water Pollution of Four Rivers in Coastal Wetland of Yellow River Estuary 被引量:1
3
作者 LIU Feng DONG Guan-cang +2 位作者 QIN Yu-guang LIU Chao ZHU Shi-wen 《Meteorological and Environmental Research》 CAS 2011年第9期51-55,61,共6页
[Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao Ri... [Objective] The study aimed at analysing water pollution of four rivers in coastal wetland of Yellow River estuary. [Method] Taking four seriously polluted rivers (Guangli River, Shenxian Ditch, Tiao River and Chao River) in coastal wetland of Yellow River estuary as study objects, water samples were collected from the four rivers in May (dry period), August (wet period) and November (normal period) in 2009 and 2010 respectively, then pollution indices like nutritive salts, COD, chlorophyll-a, petroleum, etc. were measured. Afterwards, the status quo of water pollution was assessed based on Nemero index and comprehensive trophic level index (TLI), so as to find out the integral status quo of water quality of wetland rivers and damages to aquatic ecological environment. [Result] On the whole, water pollution of four rivers in coastal wetland of Yellow River estuary was serious, in the eutrophication state, and the main pollutants were TN, TP, NH+4-N and petroleum. In addition, excessive N and P in the four rivers resulted in water eutrophication of Bohai Bay, so further leading to ride tide, which destroyed the coastal ecological environment of Bohai Sea. Moreover, compared with historical data, water pollution by nitrogen and phosphorus became more serious, while there was no obvious aggravation in the water pollution by petroleum. In a word, water pollution wasn’t optimistic on the whole. [Conclusion] The research could provide theoretical bases for the protection and utilization of river water in coastal wetland of Yellow River estuary and its coastal sea area. 展开更多
关键词 Coastal wetland of Yellow River estuary Rivers flowing into the sea Water pollution Investigation on the status quo Nemero index comprehensive trophic level index (TLI) China
下载PDF
Effects of Environmental Conditions and Aboveground Biomass on CO2 Budget in Phragmites australis Wetland of Jiaozhou Bay,China 被引量:2
4
作者 GAO Manyu KONG Fanlong +2 位作者 XI Min LI Yue LI Jihua 《Chinese Geographical Science》 SCIE CSCD 2017年第4期539-551,共13页
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas... Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem. 展开更多
关键词 net ecosystem CO_2 exchange ecosystem respiration gross primary production influencing factor estuarial saline reed wetland static chamber-GC method
下载PDF
Trade-off between leaf chlorophyll and betacyanins in Suaeda salsa in the Liaohe estuary wetland in northeast China 被引量:3
5
作者 Youzhi Li Lijuan Cui +5 位作者 Xin Yao Xiaohui Ding Xu Pan Manyin Zhang Wei Li Xiaoming Kang 《Journal of Plant Ecology》 SCIE CSCD 2018年第4期569-575,共7页
Aims Pigment composition is an important functional trait that can be affected by environmental factors.the objective of this study was to investigate the effect of soil salinity on pigment composition in Suaeda salsa... Aims Pigment composition is an important functional trait that can be affected by environmental factors.the objective of this study was to investigate the effect of soil salinity on pigment composition in Suaeda salsa by comparing chlorophyll and betacyanin content in the Liaohe estuary wetland,a typical coastal wetland in northeast China.Methods We investigated the plant biomass,percentage of red leaves and pigment content(chlorophyll a,chlorophyll b and betacyanins)in S.salsa in intertidal and supratidal zones of the upper,middle and lower reaches of the Liaohe estuary wetlands.the Na^(+)content of both the soil and plant was also measured.Full analysis of variance and multivariate analysis were used to compare differences in pig-ment content and Na^(+)content between the supratidal and intertidal zones.Important Findings Pigment composition was significantly affected by soil salinity.With increasing soil salinity,the percentage of red leaves was higher in the intertidal zone than in the supratidal zone.In all three reaches,plants had lower chlorophyll a content and higher betacyanin con-tent in the intertidal zone than in the supratidal zone.Compared to chlorophyll a,chlorophyll b was less sensitive to soil salinity.there were no differences in chlorophyll b content between the intertidal and supratidal zones in the upper and lower reaches.Furthermore,pigment composition was associated with both the plant tissue and soil Na^(+)content.Compared to the supratidal zone,the intertidal zone had a higher Na^(+)content in plants.there was a negative rela-tionship between plant chlorophyll content and soil Na^(+)content,but a positive relationship between betacyanin content and soil Na^(+)content.Overall,the results indicated that there might be a trade-off between leaf chlorophyll and betacyanin content in S.salsa to main-tain its growth and survival in high salinity environments. 展开更多
关键词 Suaeda salsa pigment composition soil Na+content Liaohe estuary wetland
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部