An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained ...An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.展开更多
[Objective] The study aimed to predict the peak water level in Pearl River Estuary under the background of sea level rise. [Method] The changing trends of peak water level at Denglongshan station and Hengmen station w...[Objective] The study aimed to predict the peak water level in Pearl River Estuary under the background of sea level rise. [Method] The changing trends of peak water level at Denglongshan station and Hengmen station were analyzed firstly on the basis of regression models, and then sea level rise in Pearl River Estuary in 2050 was predicted to estimate the 1-in-50-year peak water level in the same year. [Result] Regression analyses showed that the increasing rate of peak water level over past years was 6.3 mm/a at Denglongshan station and 5.8 mm/a at Hengmen station. In addition, if sea level will rise by 20, 30 and 60 cm respectively in 2050, it was predicted that the 1-in-50-year peak water level will reach 3.04, 3.14 and 3.44 m at Denglongshan station, and 3.19, 3.29 and 3.59 m at Hengmen station separately. [Conclusion] The estimation of peak water level in Pearl River Estuary could provide theoretical references for water resources planning.展开更多
The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in A...The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in Aomori Prefecture, Japan. The Lake Jusan is the best productive water area of the shellfish, corbicula, in Japan in 2013. Then, the lake is very important in Aomori Prefecture as corbicula's home. The change of the brackish environment influences the ecology of the corbicula shellfish, then, the shellfish harvest changes every year. Now, it is important to make clear the characteristics of the motion of salt water in the lake. In the present study, observations for the motion of the salt water going up to the lake and going down from the lake to the sea were carried out from June to September in 2015. The present study investigates the time change of the salinity distribution in a perpendicular direction and shows that the movement of the saltwater in the lake can be generated well by the theory given by Sasaki et al., 2009.展开更多
Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spa...Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.展开更多
A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing M...A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.展开更多
To meet the needs of many parameters, simpler mathematical models of the seawater mixing and exchanging at estuaries are established in this note for studying the complicated Pearl River estuary. Calculations and disc...To meet the needs of many parameters, simpler mathematical models of the seawater mixing and exchanging at estuaries are established in this note for studying the complicated Pearl River estuary. Calculations and discussions are made according to the investigation information obtained in March 1987.展开更多
Persistent organic pollutants(POPs) such as organochlorine pesticides are of global concern due to their widespread occurrence and persistence. This paper reports recent research studying the distribution and fate of ...Persistent organic pollutants(POPs) such as organochlorine pesticides are of global concern due to their widespread occurrence and persistence. This paper reports recent research studying the distribution and fate of organochlorine pesticides in the Jiulong River, the Minjiang River and the Pearl River estuaries in Southeast China. Eighteen organochlorine pesticides were extracted from water, pore water and sediment samples, followed by analysis by GC ECD. The results showed that the contamination levels were similar in these three estuaries. The levels of the total organochlorine pesticides in porewater were significantly higher than those in surface water, due to the high affinity of these hydrophobic compounds for sediment phase. Among the hexachlorocyclohexane(HCH) compounds, β HCH was found to be the most important isomer. The analysis of 1,1,1 trichloro 2,2 bis chlorophenyl ethane(DDT) and its metabolites showed that 1,1 dichloro 2[ o chlorophenyl] 2[ p chlorophenyl] ethylene(DDE) was dominant in the group.展开更多
文摘An optimal algorithm for the retrieval of chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary was established with the optical parameters derived from the in-situ data obtained in Jan. 2003 in the same area. And then, the chlorophyll, suspended sediments and gelbstoff of the SeaWiFS pixels on Jan. 29, 2003 corresponding to the in-situ sites of Jan. 25 and 26, 2003 were synchronously retrieved, with average relative errors of 14.9%, 12.1% and 13.6% for chlorophyll, suspended sediments and gelbstoff, respectively. The research results indicated that the optimal retrieval algorithm established here was relatively fit for the retrieval of the chlorophyll, suspended sediments and gelbstoff of case Ⅱ waters in the Pearl River estuary, and had quite good retrieval accuracy.
基金Supported by National Natural Science Foundation of China (50839005)Major State Basic Research Development Program (973 Program)(2010CB428405)+1 种基金Scientific Research Project of Public Welfare Industry of the Ministry of Water Resources,China (201001022)Scientific Research Project of China Water Resources Pearl River Planning Surveying and Designing Co.Ltd.(2012)
文摘[Objective] The study aimed to predict the peak water level in Pearl River Estuary under the background of sea level rise. [Method] The changing trends of peak water level at Denglongshan station and Hengmen station were analyzed firstly on the basis of regression models, and then sea level rise in Pearl River Estuary in 2050 was predicted to estimate the 1-in-50-year peak water level in the same year. [Result] Regression analyses showed that the increasing rate of peak water level over past years was 6.3 mm/a at Denglongshan station and 5.8 mm/a at Hengmen station. In addition, if sea level will rise by 20, 30 and 60 cm respectively in 2050, it was predicted that the 1-in-50-year peak water level will reach 3.04, 3.14 and 3.44 m at Denglongshan station, and 3.19, 3.29 and 3.59 m at Hengmen station separately. [Conclusion] The estimation of peak water level in Pearl River Estuary could provide theoretical references for water resources planning.
文摘The present study aims to investigate the characteristics of the motion of salt water and to show the temporal fluctuation of the vertical salinity distribution in Lake Jusan located in the estuary of Iwaki River in Aomori Prefecture, Japan. The Lake Jusan is the best productive water area of the shellfish, corbicula, in Japan in 2013. Then, the lake is very important in Aomori Prefecture as corbicula's home. The change of the brackish environment influences the ecology of the corbicula shellfish, then, the shellfish harvest changes every year. Now, it is important to make clear the characteristics of the motion of salt water in the lake. In the present study, observations for the motion of the salt water going up to the lake and going down from the lake to the sea were carried out from June to September in 2015. The present study investigates the time change of the salinity distribution in a perpendicular direction and shows that the movement of the saltwater in the lake can be generated well by the theory given by Sasaki et al., 2009.
基金supported by the National Natural Science Foundation of China(Nos.91328203 and 41306110)
文摘Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant Nos. 41206082 and 31270528), Natural Science Foundation of Guangdong (Nos. S2013020012823), Scientific Research Project of Guangzhou (No. 15020023), the project of Guangdong Provincial Department of Science and Technology (No. 2012A032100004), the projects of knowledge innovation program of State Key Laboratory of Tropical Oceanography (Nos. LTOZZ1402 and LTOZZ1604), the Key Laboratory for Ecological Environment in Coastal Area, State Oceanic Administation (No. 201507), Key Laboratory of Fishery Ecology and Environment, Guangdong Province (No. LFE-2010-14) and the visiting scholar project of the Chinese Academy Sciences overseas study program.
文摘A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.
基金Project supported by the National Natural Science Foundation of China
文摘To meet the needs of many parameters, simpler mathematical models of the seawater mixing and exchanging at estuaries are established in this note for studying the complicated Pearl River estuary. Calculations and discussions are made according to the investigation information obtained in March 1987.
文摘Persistent organic pollutants(POPs) such as organochlorine pesticides are of global concern due to their widespread occurrence and persistence. This paper reports recent research studying the distribution and fate of organochlorine pesticides in the Jiulong River, the Minjiang River and the Pearl River estuaries in Southeast China. Eighteen organochlorine pesticides were extracted from water, pore water and sediment samples, followed by analysis by GC ECD. The results showed that the contamination levels were similar in these three estuaries. The levels of the total organochlorine pesticides in porewater were significantly higher than those in surface water, due to the high affinity of these hydrophobic compounds for sediment phase. Among the hexachlorocyclohexane(HCH) compounds, β HCH was found to be the most important isomer. The analysis of 1,1,1 trichloro 2,2 bis chlorophenyl ethane(DDT) and its metabolites showed that 1,1 dichloro 2[ o chlorophenyl] 2[ p chlorophenyl] ethylene(DDE) was dominant in the group.