Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remai...Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double- blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque a and β diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis- enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.展开更多
Oral mucositis is a common morbidity induced by radiation therapy and chemo-radiotherapy for head and neck malignancies. This often results in treatment delays, premature treatment cessation and increased cost. New tr...Oral mucositis is a common morbidity induced by radiation therapy and chemo-radiotherapy for head and neck malignancies. This often results in treatment delays, premature treatment cessation and increased cost. New treatments of oral mucositis are emerging but effective remedies remain limited. Between February 2007 and May 2008, 21 patients with head and neck malignancies were treated with a supersaturated calcium phosphate oral rinse (Caphosol) that was performed for 4-10 times daily, each consisting of two one-minute rinses. There were 21 matched patients who received supportive care without the oral rinse. All patients in the two groups were treated with intensity modulated radiation therapy (IMRT) for average prescription doses of 66 Gy in 33 fractions. The effects of this rinse vs. supportive care on mucositis, PEG tube requirements, hospitalization, xerostomia, analgesic requirements and weight was respectively evaluated. We have observed statistically significant decreases in the incidence of radiation induced oral mucositis (p=0.0002) with WHO grade 3 (38% vs. 52%) and 4 mucositis (0% vs. 19%), need for PEG tube placement (33% vs. 57%) and hospitalization (0% vs 19%). There was also a favorable impact on the incidence of grade 3 (29% vs. 43%) xerostomia in the treated patients but it was statistically insignificant (p=0.58). Incremental costs related to treatment of oral mucositis were reduced considerably. Our data suggest that use of a supersaturated calcium phosphate oral rinse is an effective treatment for mucositis in patients undergoing IMRT. It may also be helpful in the reduction of hospitalization and PEG tube requirements.展开更多
Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching...Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.展开更多
Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydroge...Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydrogen evolution reaction,surface passivation and other side reactions will inevitably occur during the charging and discharging process of Zn anode,which will seriously affect the cycle stability of the battery and hinder its practical application.The etching strategy of Zn anode has attracted wide attention because of its simple operation and broad commercial prospects,and the etched Zn anode can effectively improve its electrochemical performance.However,there is no comprehensive review of the etching strategy of Zn anode.This review first summarizes the challenges faced by Zn anode,then puts forward the etching mechanisms and properties of acid,salt and other etchants.Finally,based on the above discussion,the challenges and opportunities of Zn anode etching strategy are proposed.展开更多
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
Background/Aim: Dandruff is a common scalp problem associated with flaky and inflamed skin. In this study, we investigated the efficacy of a shampoo containing piroctone olamine and climbazole and the combination of t...Background/Aim: Dandruff is a common scalp problem associated with flaky and inflamed skin. In this study, we investigated the efficacy of a shampoo containing piroctone olamine and climbazole and the combination of this shampoo with a scalp tonic containing piroctone olamine and licochalcone A, derived from Glycyrrhiza inflata root extract, to reduce dandruff. Study Design/Methods: After conditioning, 102 subjects (♂ 56 and 46 ♀) with moderate to very strong dandruff affection underwent a randomized half head study for 4 weeks. The volunteers’ heads were washed regularly either with a placebo or the anti-dandruff shampoo, followed by the anti-dandruff tonic application or no treatment. In a 2-week post-treatment phase, subjects only applied placebo shampoo. Every two weeks, trained experts assessed dandruff affection based on a scale of 1 to 6. At study start and after every 2 weeks, cytokine concentrations and anti-fungal activity of test products were determined in scalp wash-ups by enzyme-linked immunosorbant assays or a Malassezia colony-forming assay, respectively. Results: Results of expert grading and anti-fungal activity revealed a significant reduction in dandruff affection and Malassezia colony-forming units after treatment with the anti-dandruff shampoo or its combination with the tonic. Dandruff affection even remained reduced in the post-treatment phase when levels of Malassezia colony-forming units had returned to baseline. Cytokine analyses proved a significant decrease in pro-inflammatory dandruff markers after treatment with both anti-dandruff products. For the shampoo/tonic combination, a superior reduction of one scalp inflammatory marker was determined even after the post-treatment phase. Conclusion: Both the rinse-off shampoo as well as its combination with the leave-on tonic excellently alleviated dandruff and its associated micro-inflammation. Both treatments showed anti-fungal activity. The superior benefit, exerted by the combination, is primarily based on the known anti-inflammatory effect of licochalcone A and the improved scalp substantivity of the leave-on application.展开更多
Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid d...Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid dynamics(CFD)model considering heat generation of wet-etching reactions to investigate the fluid flow and heat transfer in the wet-etch reactor.The backflow is observed below and above the wafer region,as the flow resistance in this region is high.The temperature on the upper part of a wafer is higher due to the accumulation of reaction heat,and the average temperature of the side wafer is highest as its convective heat transfer is weakest.Narrowing the gap between wafer and reactor wall can force the etchant to flow in the wafer region and then facilitate the convective heat transfer,leading to better within-wafer and wafer-to-wafer etch uniformities.An inlet angle of 60°balances fluid by-pass and mechanical energy loss,and it yields the best temperature and etch uniformities.The batch with 25wafers has much wider flow channels and much lower flow resistance compared with that with 50wafers,and thus it shows better temperature and etch uniformities.These results and the CFD model should serve to guide the optimal design of batch-processing wet-etch reactors.展开更多
Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-...Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-H_(2)O gasification and etching so the DFT is carried out to see the catalytic role of different metal elements(K/Ni)in the zigzag biochar model.The calculation results show that the gasification of biochar-H_(2)O needs to go through four processes:dissociative adsorption of water,hydrogen transfer(hydrogen desorption,hydrogen atom transfer),carbon dissolution and CO desorption.The energy barrier indicated that the most significant step in reducing the activation energy of K is reflected in the hydrogen transfer step,which is reduced from 374.14 kJ/mol to 152.41 kJ/mol;the catalytic effect of Ni is mainly reflected in the carbon dissolution step,which is reduced from 122.34 kJ/mol to 84.8 kJ/mol.The existence of K causes the edge to have a stronger attraction to H and does not destroy theπbonds of biochar molecules.The destruction ofπbonds is mainly due to the role of H free radicals,while the destruction ofπbonds will lead to easier C-C bond rupture.Ni shows a strong attraction to O in OH,which forms strong Ni-O chemical bonds.Ni can also destroy the aromatic structure directly,making the gasification easier to happen.This study explored the catalytic mechanism of K/Ni on the biochar-H_(2)O gasification at the molecular level and looked forward to the potential synergy of K/Ni,laying a foundation for experimental research and catalyst design.展开更多
Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,i...Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,its practical applicability is restricted by insufficient rate ability,and severe capacity loss due to inadequate electrical conductivity and dramatic volume expansion.Inspired by the electrochemical enhancement effect of MXene substrates and the innovative Lewis acidic etching for MXene preparation,SnPS_(3)/Ti_(3)C_(2)T_(x) MXene(T=-Cl and-O) is constructed by synchronously phospho-sulfurizing Sn/Ti_(3)C_(2)T_(x) precursor.Benefiting from the boosted Na^(+) diffusion and electron transfer rates,as well as the mitigated stress expansion,the synthesized SnPS_(3/)Ti_(3)C_(2)T_(x) composite demonstrates enhanced rate capability(647 mA h g^(-1) at 10 A g^(-1)) alongside satisfactory long-term cycling stability(capacity retention of 94.6% after 2000 cycles at 5 A g^(-1)).Importantly,the assembled sodium-ion full cell delivers an impressive capacity retention of 97.7% after undergoing 1500 cycles at 2 A g^(-1).Moreover,the sodium storage mechanism of the SnPS_(3/)Ti_(3)C_(2)T_(x) electrode is elucidated through in-situ and ex-situ characterizations.This work proposes a novel approach to ameliorate the energy storage performance of thiophosphites by facile in-situ construction of composites with MXene.展开更多
The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such ...The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such Zn-deposited Al foil was quickly transferred into HCl-H 2 SO 4 solution for DC-etching. The effects of Zn impurity on the surface and cross-section etching morphologies and electrochemical behavior of Al foil were investigated by SEM, polarization curve (PC) and electrochemical impedance spectroscopy (EIS). The special capacitance of 100 V formation voltage of etched foil was measured. The results show that the chemical plating Zn on Al substrate in alkali solution can reduce the pitting corrosion resistance, enhance the pitting current density and improve the density and uniform distribution of pits and tunnels due to formation of the micro Zn-Al galvanic local cells. The special capacitance of etched foil grows with the increase of Zn2+concentration.展开更多
The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 el...The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 electrolyte at 80 ℃. The pitting potential and self corrosion potential of A1 foil were measured with polarization curves (PC). The potentiostatic current--time curve was recorded and the surface and cross section images of etched A1 foil were observed with SEM. The electrochemical impedance spectroscopy (EIS) of etched A1 foil and potential transient curves (PTC) during initial etching stage were measured. The results show the chemical pretreatments can activate A1 foil surface, facilitate the absorption, diffusion and migration of C1- onto the A1 foil during etching, and improve the initiation rate of meta-stable pits and density of stable pits and tunnels, leading to much increase in the real surface area and special capacitance of etched A1 foil.展开更多
In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching proc...In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.展开更多
A combination of atomic force microscopy (AFM) and scanning electron microscopy (SEM) is used to characterize dislocation etch pits in Si-doped GaN epilayer etched by molten KOH. Three types of etch pits with diff...A combination of atomic force microscopy (AFM) and scanning electron microscopy (SEM) is used to characterize dislocation etch pits in Si-doped GaN epilayer etched by molten KOH. Three types of etch pits with different shapes and specific positions in the surface have been observed,and a model of the etching mechanism is proposed to explain their origins. The pure screw dislocation is easily etched along the steps that the dislocation terminates. Consequently a small Ga-polar plane is formed to prevent further vertical etching,resulting in an etch pit shaped like an inverted truncated hexagonal pyramid at the terminal chiasma of two surface steps. However, the pure edge dislocation is easily etched along the dislocation line,inducing an etch pit of inverted hexagonal pyramid aligned with the surface step. The polarity is found to play an important role in the etching process of GaN.展开更多
Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching res...Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching responses,including etching rate and selectivity as functions of variation of parameters,are modeled with a 3D neural network.A novel resist/metal combined mask that can overcome the single-layer masks’ limitations is developed for enhancing the waveguides deep etching and low-loss optical waveguides are fabricated at last.展开更多
基金funded by a joint research program between the Chinese Academy of Sciences and Procter & Gamble
文摘Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double- blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque a and β diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis- enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.
基金Supported by The Ministerio de Sanidad y Consumo No.PIO81988(Madrid,Spain)Eirini Pantazi wishes to thank the Agència de Gestiód’Ajuts Universitaris i de Recerca No.2012FI_B00382Mohamed Bejaoui thanks CSIC No.I-COOP05 for their fellowships
文摘AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts.
文摘Oral mucositis is a common morbidity induced by radiation therapy and chemo-radiotherapy for head and neck malignancies. This often results in treatment delays, premature treatment cessation and increased cost. New treatments of oral mucositis are emerging but effective remedies remain limited. Between February 2007 and May 2008, 21 patients with head and neck malignancies were treated with a supersaturated calcium phosphate oral rinse (Caphosol) that was performed for 4-10 times daily, each consisting of two one-minute rinses. There were 21 matched patients who received supportive care without the oral rinse. All patients in the two groups were treated with intensity modulated radiation therapy (IMRT) for average prescription doses of 66 Gy in 33 fractions. The effects of this rinse vs. supportive care on mucositis, PEG tube requirements, hospitalization, xerostomia, analgesic requirements and weight was respectively evaluated. We have observed statistically significant decreases in the incidence of radiation induced oral mucositis (p=0.0002) with WHO grade 3 (38% vs. 52%) and 4 mucositis (0% vs. 19%), need for PEG tube placement (33% vs. 57%) and hospitalization (0% vs 19%). There was also a favorable impact on the incidence of grade 3 (29% vs. 43%) xerostomia in the treated patients but it was statistically insignificant (p=0.58). Incremental costs related to treatment of oral mucositis were reduced considerably. Our data suggest that use of a supersaturated calcium phosphate oral rinse is an effective treatment for mucositis in patients undergoing IMRT. It may also be helpful in the reduction of hospitalization and PEG tube requirements.
基金This work is supported by the Natural Science Foundation of China(Grant Nos.62274143&62204216)Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LHZSD24E020001)+4 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant Nos.2022C0102&2023C01010)Partial support was provided by the Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)the Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors,Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University.
文摘Molten-alkali etching has been widely used to reveal dislocations in 4H silicon carbide(4H-SiC),which has promoted the identification and statistics of dislocation density in 4H-SiC single crystals.However,the etching mechanism of 4H-SiC is limited misunderstood.In this letter,we reveal the anisotropic etching mechanism of the Si face and C face of 4H-SiC by combining molten-KOH etching,X-ray photoelectron spectroscopy(XPS)and first-principles investigations.The activation energies for the molten-KOH etching of the C face and Si face of 4H-SiC are calculated to be 25.09 and 35.75 kcal/mol,respectively.The molten-KOH etching rate of the C face is higher than the Si face.Combining XPS analysis and first-principles calculations,we find that the molten-KOH etching of 4H-SiC is proceeded by the cycling of the oxidation of 4H-SiC by the dissolved oxygen and the removal of oxides by molten KOH.The faster etching rate of the C face is caused by the fact that the oxides on the C face are unstable,and easier to be removed with molten alkali,rather than the C face being easier to be oxidized.
基金supported by the Science and Technology Research Project of the Education Department of Jilin Province (JJKH20230803KJ)。
文摘Zinc-ion batteries(ZIBs)are considered to be one of the most promising candidates to replace lithium-ion batteries(LIBs)due to the high theoretical capacity,low cost and intrinsic safety.However,zinc dendrites,hydrogen evolution reaction,surface passivation and other side reactions will inevitably occur during the charging and discharging process of Zn anode,which will seriously affect the cycle stability of the battery and hinder its practical application.The etching strategy of Zn anode has attracted wide attention because of its simple operation and broad commercial prospects,and the etched Zn anode can effectively improve its electrochemical performance.However,there is no comprehensive review of the etching strategy of Zn anode.This review first summarizes the challenges faced by Zn anode,then puts forward the etching mechanisms and properties of acid,salt and other etchants.Finally,based on the above discussion,the challenges and opportunities of Zn anode etching strategy are proposed.
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
文摘Background/Aim: Dandruff is a common scalp problem associated with flaky and inflamed skin. In this study, we investigated the efficacy of a shampoo containing piroctone olamine and climbazole and the combination of this shampoo with a scalp tonic containing piroctone olamine and licochalcone A, derived from Glycyrrhiza inflata root extract, to reduce dandruff. Study Design/Methods: After conditioning, 102 subjects (♂ 56 and 46 ♀) with moderate to very strong dandruff affection underwent a randomized half head study for 4 weeks. The volunteers’ heads were washed regularly either with a placebo or the anti-dandruff shampoo, followed by the anti-dandruff tonic application or no treatment. In a 2-week post-treatment phase, subjects only applied placebo shampoo. Every two weeks, trained experts assessed dandruff affection based on a scale of 1 to 6. At study start and after every 2 weeks, cytokine concentrations and anti-fungal activity of test products were determined in scalp wash-ups by enzyme-linked immunosorbant assays or a Malassezia colony-forming assay, respectively. Results: Results of expert grading and anti-fungal activity revealed a significant reduction in dandruff affection and Malassezia colony-forming units after treatment with the anti-dandruff shampoo or its combination with the tonic. Dandruff affection even remained reduced in the post-treatment phase when levels of Malassezia colony-forming units had returned to baseline. Cytokine analyses proved a significant decrease in pro-inflammatory dandruff markers after treatment with both anti-dandruff products. For the shampoo/tonic combination, a superior reduction of one scalp inflammatory marker was determined even after the post-treatment phase. Conclusion: Both the rinse-off shampoo as well as its combination with the leave-on tonic excellently alleviated dandruff and its associated micro-inflammation. Both treatments showed anti-fungal activity. The superior benefit, exerted by the combination, is primarily based on the known anti-inflammatory effect of licochalcone A and the improved scalp substantivity of the leave-on application.
基金financially supported by the National Natural Science Foundation of China(22378115 and 22078090)the Shanghai Rising-Star Program(21QA1402000)+1 种基金the Natural Science Foundation of Shanghai(21ZR1418100)the Fundamental Research Funds for the Central Universities(JKA01231803)。
文摘Batch-processing wet-etch reactors are the key equipment widely used in chip fabrication,and their performance is largely affected by the internal structure.This work develops a three-dimensional computational fluid dynamics(CFD)model considering heat generation of wet-etching reactions to investigate the fluid flow and heat transfer in the wet-etch reactor.The backflow is observed below and above the wafer region,as the flow resistance in this region is high.The temperature on the upper part of a wafer is higher due to the accumulation of reaction heat,and the average temperature of the side wafer is highest as its convective heat transfer is weakest.Narrowing the gap between wafer and reactor wall can force the etchant to flow in the wafer region and then facilitate the convective heat transfer,leading to better within-wafer and wafer-to-wafer etch uniformities.An inlet angle of 60°balances fluid by-pass and mechanical energy loss,and it yields the best temperature and etch uniformities.The batch with 25wafers has much wider flow channels and much lower flow resistance compared with that with 50wafers,and thus it shows better temperature and etch uniformities.These results and the CFD model should serve to guide the optimal design of batch-processing wet-etch reactors.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52276180)the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2022E026).
文摘Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-H_(2)O gasification and etching so the DFT is carried out to see the catalytic role of different metal elements(K/Ni)in the zigzag biochar model.The calculation results show that the gasification of biochar-H_(2)O needs to go through four processes:dissociative adsorption of water,hydrogen transfer(hydrogen desorption,hydrogen atom transfer),carbon dissolution and CO desorption.The energy barrier indicated that the most significant step in reducing the activation energy of K is reflected in the hydrogen transfer step,which is reduced from 374.14 kJ/mol to 152.41 kJ/mol;the catalytic effect of Ni is mainly reflected in the carbon dissolution step,which is reduced from 122.34 kJ/mol to 84.8 kJ/mol.The existence of K causes the edge to have a stronger attraction to H and does not destroy theπbonds of biochar molecules.The destruction ofπbonds is mainly due to the role of H free radicals,while the destruction ofπbonds will lead to easier C-C bond rupture.Ni shows a strong attraction to O in OH,which forms strong Ni-O chemical bonds.Ni can also destroy the aromatic structure directly,making the gasification easier to happen.This study explored the catalytic mechanism of K/Ni on the biochar-H_(2)O gasification at the molecular level and looked forward to the potential synergy of K/Ni,laying a foundation for experimental research and catalyst design.
基金financially National Natural Science Foundation of China (Grant Number: 22265018)Key Project of Natural Science Foundation of Jiangxi Province (Grant Number: 20232ACB204010)。
文摘Recently,SnPS_(3) has gained attention as an impressive sodium-ion battery anode material because of its significant theoretical specific capacity derived from the conversion-alloying reaction mechanism.Nevertheless,its practical applicability is restricted by insufficient rate ability,and severe capacity loss due to inadequate electrical conductivity and dramatic volume expansion.Inspired by the electrochemical enhancement effect of MXene substrates and the innovative Lewis acidic etching for MXene preparation,SnPS_(3)/Ti_(3)C_(2)T_(x) MXene(T=-Cl and-O) is constructed by synchronously phospho-sulfurizing Sn/Ti_(3)C_(2)T_(x) precursor.Benefiting from the boosted Na^(+) diffusion and electron transfer rates,as well as the mitigated stress expansion,the synthesized SnPS_(3/)Ti_(3)C_(2)T_(x) composite demonstrates enhanced rate capability(647 mA h g^(-1) at 10 A g^(-1)) alongside satisfactory long-term cycling stability(capacity retention of 94.6% after 2000 cycles at 5 A g^(-1)).Importantly,the assembled sodium-ion full cell delivers an impressive capacity retention of 97.7% after undergoing 1500 cycles at 2 A g^(-1).Moreover,the sodium storage mechanism of the SnPS_(3/)Ti_(3)C_(2)T_(x) electrode is elucidated through in-situ and ex-situ characterizations.This work proposes a novel approach to ameliorate the energy storage performance of thiophosphites by facile in-situ construction of composites with MXene.
基金Project (51172102) supported by the National Natural Science Foundation of ChinaProject (BS2011CL011) supported by Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province(doctor fund),China
文摘The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such Zn-deposited Al foil was quickly transferred into HCl-H 2 SO 4 solution for DC-etching. The effects of Zn impurity on the surface and cross-section etching morphologies and electrochemical behavior of Al foil were investigated by SEM, polarization curve (PC) and electrochemical impedance spectroscopy (EIS). The special capacitance of 100 V formation voltage of etched foil was measured. The results show that the chemical plating Zn on Al substrate in alkali solution can reduce the pitting corrosion resistance, enhance the pitting current density and improve the density and uniform distribution of pits and tunnels due to formation of the micro Zn-Al galvanic local cells. The special capacitance of etched foil grows with the increase of Zn2+concentration.
基金Project supported by University New Materials Disciplines Constructions Program of Beijing Region,ChinaProject(51172102/E020801) supported by the National Natural Science Foundation of China
文摘The aluminum foil for high voltage aluminum electrolytic capacitor was immersed in 0.5 mol/L H3PO4 or 0.125 mol/L NaOH solution at 40 ℃ for different time and then DC electro-etched in 1 mol/L HC1+2.5 mol/L H2SO4 electrolyte at 80 ℃. The pitting potential and self corrosion potential of A1 foil were measured with polarization curves (PC). The potentiostatic current--time curve was recorded and the surface and cross section images of etched A1 foil were observed with SEM. The electrochemical impedance spectroscopy (EIS) of etched A1 foil and potential transient curves (PTC) during initial etching stage were measured. The results show the chemical pretreatments can activate A1 foil surface, facilitate the absorption, diffusion and migration of C1- onto the A1 foil during etching, and improve the initiation rate of meta-stable pits and density of stable pits and tunnels, leading to much increase in the real surface area and special capacitance of etched A1 foil.
基金Project (2011A090200123) supported by Industry-Universities-Research Cooperation Project of Guangdong Province and Ministry of Education of ChinaProject (111gpy06) supported by Fundamental Research Funds for the Central Universities,ChinaProject (101055807) supported by the Innovative Experiment Plan Project for College Students of Sun Yat-sen University,China
文摘In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.
文摘A combination of atomic force microscopy (AFM) and scanning electron microscopy (SEM) is used to characterize dislocation etch pits in Si-doped GaN epilayer etched by molten KOH. Three types of etch pits with different shapes and specific positions in the surface have been observed,and a model of the etching mechanism is proposed to explain their origins. The pure screw dislocation is easily etched along the steps that the dislocation terminates. Consequently a small Ga-polar plane is formed to prevent further vertical etching,resulting in an etch pit shaped like an inverted truncated hexagonal pyramid at the terminal chiasma of two surface steps. However, the pure edge dislocation is easily etched along the dislocation line,inducing an etch pit of inverted hexagonal pyramid aligned with the surface step. The polarity is found to play an important role in the etching process of GaN.
文摘Optical waveguides in silica-on-silicon are one of the key elements in optical communications.The processes of deep etching silica waveguides using resist and metal masks in RIE plasma are investigated.The etching responses,including etching rate and selectivity as functions of variation of parameters,are modeled with a 3D neural network.A novel resist/metal combined mask that can overcome the single-layer masks’ limitations is developed for enhancing the waveguides deep etching and low-loss optical waveguides are fabricated at last.