期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Towards an Ecological Understanding of Translation Etemality in the Context of Iran
1
作者 Maryam Shirdel Majid Elahi Shirvan 《Sino-US English Teaching》 2016年第6期468-491,共24页
This study attempted to investigate the similarities and differences regarding the conceptions of translation eternality among a small group of Iranian people of different social positions and different ages. Sixty-tw... This study attempted to investigate the similarities and differences regarding the conceptions of translation eternality among a small group of Iranian people of different social positions and different ages. Sixty-two participants were selected based on the maximum variation sampling. To gather data, semi-structured interview was utilized. The participants were asked a list of 11 questions collected from the existing literature on the similar topics. Then, the interviews were transcribed for analyzing the data. Besides, Erikson's (1959) theory of development was used to classify participants of different ages in four groups of teenager, young, middle age, and old. The high frequency factors were found and analyzed with the use of Bronfenbrenner's (1979) nested ecological model. Moreover, the participants were classified in 11 groups based on their social positions and their conceptions were analyzed with the same method. Broadly speaking, 17 central tendencies in the interviews were obtained: People mainly focused on subjects of the books, translation fluency, author's competence in writing, and translator's competence, translations which have common grounds with social events of Iran, advertisement, existence of movie or cartoon adaptation of the book, translator's awareness of the content of the book, existence of cultural similarities between the source and target culture, popularity of the translator, author, and the original book, conversational language in translation, translation fidelity, being both translator and author, and effect of censorship on translation. Besides, old participants seemed to have more precise view on translation eternality and teenager's concerns were mostly about the appearance-related issues. 展开更多
关键词 translation etemality ecological understanding nested ecological model translation competence translation fidelity
下载PDF
Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis
2
作者 Fengyu Zhang Yunna Guo +14 位作者 Chenxi Li Tiening Tan Xuedong Zhang Jun Zhao Ping Qiu Hongbing Zhang Zhaoyu Rong Dingding Zhu Lei Deng Zhangran Ye Zhixuan Yu Peng Jia Xiang Liu Jianyu Huang Liqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期467-475,共9页
Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotrop... Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotropic lattice evolution during lithiation/delithiation hinders its practical application.Herein,by utilizing the in situ environmental transmission electron microscopy(ETEM),we provide a real time nanoscale characterization of high temperature solid-state synthesis of LiNi_(0.8)CO_(0.1)Mn_(0.1)O_(2)(NCM811) cathode,and unprecedentedly reveal the strain/stress formation and morphological evolution mechanism of primary/second ary particles,as well as their influence on electrochemical performance.We show that stress inhomogeneity during solid-state synthesis will lead to both primary/secondary particle pulverization and new grain boundary initiation,which are detrimental to cathode cycling stability and rate performance.Aiming to alleviate this multiscale strain during solid-state synthesis,we introduced a calcination scheme that effectively relieves the stress during the synthesis,thus mitigating the primary/secondary particle crack and the detrimental grain boundaries formation,which in turn improves the cathode structural integrity and Li-ion transport kinetics for long-life and high-rate electrochemical performance.This work remarkably advances the fundamental understanding on mechanochemical properties of transition metal oxide cathode with solid-state synthesis and provides a unified guide for optimization the Ni-rich oxide cathode. 展开更多
关键词 Ni-rich cathode In situ ETEM Solid-state synthesis Multiscale strain alleviation
下载PDF
ETEM塔架在大面积现浇混凝土楼板支模中的应用
3
作者 李澍 《广东土木与建筑》 2002年第8期33-34,共2页
关键词 ETEM塔架 混凝土 楼板 支模
下载PDF
ETEM公司改造铝挤压机
4
作者 苏鸿英 《有色金属工业》 2003年第4期71-71,共1页
苏兰奥托昆普公司宣布采用其直接浸出工艺取代挪威Odda锌冶炼厂的焙烧工艺,投资为 8800万澳元,该改造将会立即开工并于2004年下半年完成,在此期间对生产影响不会太大。
关键词 铝挤压机 改造 ETEM公司 液压系统 能耗
下载PDF
Direct observation of oxygen vacancy formation and migration over ceria surface by in situ environmental transmission electron microscopy 被引量:1
5
作者 Dawei Pang Wei Li +7 位作者 Ningqiang Zhang Hong He Shengcheng Mao Yanhui Chen Liwei Cao Chong Li Ang Li Xiaodong Han 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第4期676-682,共7页
The extremely high structural tolerance of ceria to oxygen vacancies(Ov)has made it a desirable catalytic material for the hydrocarbon oxidation to chemicals and pharmaceuticals and the reduction of gaseous pollutants... The extremely high structural tolerance of ceria to oxygen vacancies(Ov)has made it a desirable catalytic material for the hydrocarbon oxidation to chemicals and pharmaceuticals and the reduction of gaseous pollutants.It is proposed that the formation and diffusion of Ov originate from its outstanding reduction property.However,the formation and diffusion process of Ov over the surface of ceria at the atomic level is still unknown.Herein,the structural and valence evolution of CeO_(2)(111)surfaces in reductive,oxidative and vacuum environments from room temperature up to 700℃was studied with in situ aberration-corrected environmental transmission electron microscopy(ETEM)experiments.Ov is found to form under a high vacuum at elevated temperatures;however,the surface can recover to the initial state through the adsorption of oxygen atoms in an oxygen-contained environment.Furthermore,in hydrogen environment,the step-CeO_(2)(111)surface is not stable at elevated temperatures;thus,the steps tend to be eliminated with increasing temperature.Combined with first-principles density function calculations(DFT),it is proposed that O-terminated surfaces would develop in a hypoxic environment due to the dynamic diffusion of Ov from the outer surface to the subsurface.Furthermore,in a reductive environment,H2 facilitates the formation and diffusion of Ov while Ce-terminated surfaces develope.These results reveal dynamic atomic-scale interplay between the nanoceria surface and gas,thereby providing fundamental insights into the Ov-dependent reaction of nano-CeO_(2) during catalytic processes. 展开更多
关键词 CERIA Direct observation In situ ETEM Oxygen vacancy Density function calculations RAREEARTHS
原文传递
Revealing the dynamics of the alloying and segregation of Pt-Co nanoparticles via in-situ environmental transmission electron microscopy 被引量:1
6
作者 Xing Li Shaobo Cheng +6 位作者 Yanghua He Lixiang Qian Dmitri Zakharov Gang Wu Chongxin Shan Liang Zhang Dong Su 《Nano Research》 SCIE EI CSCD 2023年第2期3055-3062,共8页
Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes.So far,the mechanisms leading to the size and composition heterogeneity,as well as ... Thermal treatment is a general and efficient way to synthesize intermetallic catalysts and may involve complicated physical processes.So far,the mechanisms leading to the size and composition heterogeneity,as well as the phase segregation behavior in Pt-Co nanoparticles(NPs)are still not well understood.Via in-situ environmental transmission electron microscopy,the formation dynamics and segregation behaviors of Pt-Co alloyed NPs during the thermal treatment were investigated.It is found that Pt-Co NPs on zeolitic imidazolate frameworks-67-derived nanocarbon(NC)are formed consecutively through both particle migration coalescence and the Ostwald ripening process.The existence of Pt NPs is found to affect the movement of Co NPs during their migration.With the help of theoretical calculations,the correlations between the composition and migration of the Pt and Co during the ripening process were uncovered.These complex alloying processes are revealed as key factors leading to the heterogeneity of the synthesized Pt-Co alloyed NPs.Under oxidation environment,the Pt-Co NPs become surface faceted gradually,which can be attributed to the oxygen facilitated relatively higher segregation rate of Co from the(111)surface.This work advances the fundamental understanding of design,synthesis,and durability of the Pt-based nanocatalysts. 展开更多
关键词 intermetallic catalyst ALLOYING RIPENING segregation dynamics environmental transmission electron microscopy(ETEM)
原文传递
Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy 被引量:4
7
作者 Dejiong Zhang Chuanhong Jin +2 位作者 Z.Y.Li Ze Zhang Jixue Li 《Science Bulletin》 SCIE EI CAS CSCD 2017年第11期775-778,共4页
The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to ... The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy.Firstly,cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide,then to polycrystalline tricobalt tetroxide,in the presence of oxygen with a low partial pressure.Numerous cavities(or voids) were formed during the oxidation,owing to the Kirkendall effect.Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law,which was consistent with diffusion-limited kinetics.In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered.The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation,and formed the hollow structure.Irradiation by the electron beam,which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate,played an important role in activating and promoting the oxidations.These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction. 展开更多
关键词 COBALT Nanoparticle Oxidation dynamics Parabolic rate Environmental transmission electron microscopy (ETEM) Electron irradiation
原文传递
In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen 被引量:3
8
作者 Wentao Yuan Jian Yu +3 位作者 Hengbo Li Ze Zhang Chenghua Sun Yong Wang 《Nano Research》 SCIE EI CAS CSCD 2017年第2期397-404,共8页
Direct observation of the dissolution behavior of nanomaterials could provide fundamental insight to understanding their anisotropic properties and stability. The dissolution mechanism in solution and vacuum has been ... Direct observation of the dissolution behavior of nanomaterials could provide fundamental insight to understanding their anisotropic properties and stability. The dissolution mechanism in solution and vacuum has been well documented. However, the gas-involved dissolution and regrowth have seldom been explored and the mechanisms remain elusive. We report herein, an in situ TEM study of the dissolution and regrowth dynamics of MoO2 nanowires under oxygen using environmental transmission electron microscopy (ETEM). For the first time, oscillatory dissolution on the nanowire tip is revealed, and, intriguingly, simultaneous layer-by-layer regrowth on the sidewall facets is observed, leading to a shorter and wider nanowire. Combined with first-principles calculations, we found that electron beam irradiation caused oxygen loss in the tip facets, which resulted in changing the preferential growth facets and drove the morphology reshaping. 展开更多
关键词 oxide surface oscillatory behavior dissolution kinetics in situ transmissionelectron microscopy (TEM) environmentaltransmission electronmicroscopy (ETEM)
原文传递
In Situ TEM Observation of the Gasification and Growth of Carbon Nanotubes Using Iron Catalysts 被引量:2
9
作者 Xiaofeng Feng See Wee Chee +5 位作者 Renu Sharma Kai Liu Xu Xie Qunqing Li Shoushan Fan Kaili Jiang 《Nano Research》 SCIE EI CAS CSCD 2011年第8期767-779,共13页
We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the ... We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the precursor gas, acetylene, at the growth temperature, and reinitiate the growth when acetylene is re-introduced. The switching between gasification and growth of CNTs can be repeated many times with the same catalyst. To understand the phenomenon, thermogravimetric analysis (TGA) coupled with mass spectroscopy was used to study the mechanism involved. It was shown that the residual water molecules in the growth chamber of the TEM react with and remove carbon atoms of CNTs as carbon monoxide vapor under the action of the catalyst, when the precursor gas is pumped out. This result contributes to a better understanding of the water-assisted and oxygen-assisted synthesis of CNT arrays, and provides useful clues on how to extend the lifetime and improve the activity of the catalysts. 展开更多
关键词 Carbon nanotubes GASIFICATION GROWTH iron catalyst environmental transmission electron microscopy (ETEM) thermogravimetric analysis (TGA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部