Catalytic hydrogenolysis of aromatic ether bonds is a highly promising strategy for upgrading lignin into small-molecule chemicals,which relies on developing innovative heterogeneous catalysts with high activity.Herei...Catalytic hydrogenolysis of aromatic ether bonds is a highly promising strategy for upgrading lignin into small-molecule chemicals,which relies on developing innovative heterogeneous catalysts with high activity.Herein,we designed porous zirconium phosphate nanosheet-supported Ru nanocatalysts(Ru/ZrPsheet)as the heterogeneous catalyst by a process combining ball milling and molten-salt(KNO_(3)).Very interestingly,the fabricated Ru/ZrPsheetshowed good catalytic performance on the transfer hydrogenolysis of various types of aromatic ether bonds contained in lignin,i.e.,4-O-5,a-O-4,β-O-4,and aryl-O-CH3,over a low Ru usage(<0.5 mol%)without using any acidic/basic additive.Detailed investigations indicated that the properties of Ru and the support were indispensable.The excellent activity of Ru/ZZrPsheetoriginated from the strong acidity and basicity of ZrPsheetand the higher electron density of metallic Ru0as well as the nanosheet structure of ZrPsheet.展开更多
Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investig...Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investigated. The results showed that the two adsorbents adsorb phenol from hexane solution through hydrogen-bonding and π-π stacking interaction.展开更多
AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-d...AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.展开更多
Treatment of bis(2-dimethylaminoethyl) ether(BDMAE) with nickel acetate afforded a novel 3D nickel(Ⅱ) complex [Ni(BDMAE)(H2O)3·(CH3COO)2·(H2O)2] under solvothermal conditions. Its crystal stru...Treatment of bis(2-dimethylaminoethyl) ether(BDMAE) with nickel acetate afforded a novel 3D nickel(Ⅱ) complex [Ni(BDMAE)(H2O)3·(CH3COO)2·(H2O)2] under solvothermal conditions. Its crystal structure was characterized by elemental analysis, IR spectrum, PXRD and single-crystal X-ray diffraction analysis. The complex belongs to the orthorhombic system, space group C2221 with a=8.823(2), b=13.932(3), c=17.563(4) , V=2158.9(8) 3, Z=4, C(12)H(36)N2NiO(10), Mr=427.14, Dc=1.314 g/cm3, F(000)=920 and μ=0.944 mm(-1). Single-crystal X-ray diffraction reveals that the mononuclear nickel(Ⅱ) ion is six-coordinated to one oxygen, two nitrogen atoms of the BDMAE ligand and three oxygen atoms of coordinated water molecules. The complex exhibits a 3D supramolecular structure through a variety of intermolecular and intramolecular hydrogen bonding interactions. In addition, the complex has been investigated for catalytic properties towards the Henry reaction of nitromethane with p-nitrobenzaldehyde, and the results indicated that the 1-p-nitrophenyl-2-nitroethanol product was obtained in excellent yield under optimum conditions with the complex as the catalyst.展开更多
A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through ...A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.展开更多
饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于...饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于C(sp^(3))−H键催化氧化的研究主要涉及一些键能低的、预活化的C−H键,包括苄基型、亚甲基型、脂肪族X−CH_(2)(X=O,N)和甲苯等,含有未活化C(sp^(3))−H键的复杂化合物的选择性氧化仍具有挑战性.例如,芳基醚C(sp^(3))−H键功能化通常采用计量的过氧化物氧化剂,或者通过单电子氧化和碱促进的去质子化进一步构建C−C/C−N键,产物选择性较低,也带来了一些不利的环境影响.因此,有必要开发高效、温和的芳基醚C(sp^(3))−H键选择氧化方法,并将其应用于有机合成和药物开发.近年来,光催化C(sp^(3))−H键氧化因其操作简便、氧化还原中性等优点,已发展成为一种有用且多样的催化研究工具.本文发展了一种利用氧气作为氧化剂,在可见光驱动下选择性地将芳基醚C(sp^(3))−H键氧化成为甲酸苯酯类产物的新方法.使用Mes-10-phenyl-Acr^(+)−BF_(4)^(-)光催化剂,高效活化多种氯源(如盐酸、无机氯盐和有机氯化物)得到氯自由基,由于其具有较高的氧化能力(+2.03 V vs.SCE)和对氢原子的亲和力,能够通过氢原子转移过程活化芳基醚C(sp^(3))−键,攫取氢自由基得到相应的烷基碳自由基(•CH_(2)OPh)中间体,进一步被分子氧选择氧化得到酯类目标产物.研究结果表明,多种链状芳基醚和不同取代(如给电子基和吸电子基)芳基醚均可发生氧化反应,高收率地合成了一系列官能团丰富的甲酸苯酯类化合物.本文方法具有反应条件温和、操作简单、官能团耐受性好以及可规模化放大等优点,并且少量的水对反应没有明显影响.机理实验研究结果表明,芳基醚C(sp^(3))−H键的断裂是反应过程的决速步骤.紫外可见吸收光谱结果表明,氯离子与催化剂之间的相互作用强于底物,并且自由基捕获实验证实反应体系中存在氯自由基和烷基碳自由基物种,表明反应经历自由基路径.此外,电子顺磁共振测试结果表明,反应过程中存在单线态氧物种,可能是激发态的光催化剂直接与氧气发生能量转移得到;同位素实验(18O)揭示了甲酸苯酯类化合物氧的来源.综上,本文实现了温和条件下光催化芳基醚C(sp^(3))−H键选择氧化反应,高收率合成了一系列甲酸苯酯类化合物.该方法避免了化学计量的过氧化物和碱等添加剂的使用以及底物的过度氧化,阐明了催化反应机制,为其他醚类化合物的C(sp^(3))−H键氧化功能化提供了新思路,为后续化学合成和药物开发提供了参考和启示.展开更多
Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for de...Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.展开更多
基金financially supported by the National Natural Science Foundation of China(22072157,22293012,22179132,22121002)。
文摘Catalytic hydrogenolysis of aromatic ether bonds is a highly promising strategy for upgrading lignin into small-molecule chemicals,which relies on developing innovative heterogeneous catalysts with high activity.Herein,we designed porous zirconium phosphate nanosheet-supported Ru nanocatalysts(Ru/ZrPsheet)as the heterogeneous catalyst by a process combining ball milling and molten-salt(KNO_(3)).Very interestingly,the fabricated Ru/ZrPsheetshowed good catalytic performance on the transfer hydrogenolysis of various types of aromatic ether bonds contained in lignin,i.e.,4-O-5,a-O-4,β-O-4,and aryl-O-CH3,over a low Ru usage(<0.5 mol%)without using any acidic/basic additive.Detailed investigations indicated that the properties of Ru and the support were indispensable.The excellent activity of Ru/ZZrPsheetoriginated from the strong acidity and basicity of ZrPsheetand the higher electron density of metallic Ru0as well as the nanosheet structure of ZrPsheet.
基金the National Natural Science Foundation of China(No.29974015)the Visiting Scholar Foundation of Key Lab.In University for the financial support
文摘Two polymeric adsorbents, poly(methyl p-vinylbenzyl ether) and poly(phenyl p-vinylbenzyl ether), were synthesized from chloromethylated polystyrene. Their adsorption property for phenol in hexane solution was investigated. The results showed that the two adsorbents adsorb phenol from hexane solution through hydrogen-bonding and π-π stacking interaction.
文摘AlCl3-mediated cleavage of ethereal methyl–oxygen bond in aroylated 2,7-dimethoxynaphthalene compounds proceeds chemospecifically and regioselectively. The ethereal bond at the β(2)-position of 1-monoaroylated 2,7-dimethoxynaphthalene is cleaved readily and predominantly against the β(7)-position, whereas scission of β-ethereal bonds of 1,8-diaroylated 2,7-dimethoxynaphthalene hardly undergoes like the non-aroylated mother frame compound of 2,7-dimethoxynaphthalene.
基金supported by the National Natural Science Foundation of China(No.21271136)the Key Science Foundation of Anhui Provincial Education Department(No.KJ2016A772)the Research Team of Anhui Provincial Education Department(Photoelectric Information Materials and New Energy Devices)
文摘Treatment of bis(2-dimethylaminoethyl) ether(BDMAE) with nickel acetate afforded a novel 3D nickel(Ⅱ) complex [Ni(BDMAE)(H2O)3·(CH3COO)2·(H2O)2] under solvothermal conditions. Its crystal structure was characterized by elemental analysis, IR spectrum, PXRD and single-crystal X-ray diffraction analysis. The complex belongs to the orthorhombic system, space group C2221 with a=8.823(2), b=13.932(3), c=17.563(4) , V=2158.9(8) 3, Z=4, C(12)H(36)N2NiO(10), Mr=427.14, Dc=1.314 g/cm3, F(000)=920 and μ=0.944 mm(-1). Single-crystal X-ray diffraction reveals that the mononuclear nickel(Ⅱ) ion is six-coordinated to one oxygen, two nitrogen atoms of the BDMAE ligand and three oxygen atoms of coordinated water molecules. The complex exhibits a 3D supramolecular structure through a variety of intermolecular and intramolecular hydrogen bonding interactions. In addition, the complex has been investigated for catalytic properties towards the Henry reaction of nitromethane with p-nitrobenzaldehyde, and the results indicated that the 1-p-nitrophenyl-2-nitroethanol product was obtained in excellent yield under optimum conditions with the complex as the catalyst.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20164030201070)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and future Planning(NRF-2017R1A2B4005230)
文摘A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.
文摘饱和的碳氢键氧化是合成化学和化学工业中一类重要的化学反应.然而,饱和C(sp^(3))−H键离解能(BDEs)较高、极性较弱,导致了底物难以活化和催化转化效率较低等问题.在过去的几十年,C(sp^(3))−H键的定向活化转化取得了重要的进展.其中,关于C(sp^(3))−H键催化氧化的研究主要涉及一些键能低的、预活化的C−H键,包括苄基型、亚甲基型、脂肪族X−CH_(2)(X=O,N)和甲苯等,含有未活化C(sp^(3))−H键的复杂化合物的选择性氧化仍具有挑战性.例如,芳基醚C(sp^(3))−H键功能化通常采用计量的过氧化物氧化剂,或者通过单电子氧化和碱促进的去质子化进一步构建C−C/C−N键,产物选择性较低,也带来了一些不利的环境影响.因此,有必要开发高效、温和的芳基醚C(sp^(3))−H键选择氧化方法,并将其应用于有机合成和药物开发.近年来,光催化C(sp^(3))−H键氧化因其操作简便、氧化还原中性等优点,已发展成为一种有用且多样的催化研究工具.本文发展了一种利用氧气作为氧化剂,在可见光驱动下选择性地将芳基醚C(sp^(3))−H键氧化成为甲酸苯酯类产物的新方法.使用Mes-10-phenyl-Acr^(+)−BF_(4)^(-)光催化剂,高效活化多种氯源(如盐酸、无机氯盐和有机氯化物)得到氯自由基,由于其具有较高的氧化能力(+2.03 V vs.SCE)和对氢原子的亲和力,能够通过氢原子转移过程活化芳基醚C(sp^(3))−键,攫取氢自由基得到相应的烷基碳自由基(•CH_(2)OPh)中间体,进一步被分子氧选择氧化得到酯类目标产物.研究结果表明,多种链状芳基醚和不同取代(如给电子基和吸电子基)芳基醚均可发生氧化反应,高收率地合成了一系列官能团丰富的甲酸苯酯类化合物.本文方法具有反应条件温和、操作简单、官能团耐受性好以及可规模化放大等优点,并且少量的水对反应没有明显影响.机理实验研究结果表明,芳基醚C(sp^(3))−H键的断裂是反应过程的决速步骤.紫外可见吸收光谱结果表明,氯离子与催化剂之间的相互作用强于底物,并且自由基捕获实验证实反应体系中存在氯自由基和烷基碳自由基物种,表明反应经历自由基路径.此外,电子顺磁共振测试结果表明,反应过程中存在单线态氧物种,可能是激发态的光催化剂直接与氧气发生能量转移得到;同位素实验(18O)揭示了甲酸苯酯类化合物氧的来源.综上,本文实现了温和条件下光催化芳基醚C(sp^(3))−H键选择氧化反应,高收率合成了一系列甲酸苯酯类化合物.该方法避免了化学计量的过氧化物和碱等添加剂的使用以及底物的过度氧化,阐明了催化反应机制,为其他醚类化合物的C(sp^(3))−H键氧化功能化提供了新思路,为后续化学合成和药物开发提供了参考和启示.
基金supported by the National Key Basic Research Program of China(973 program,2013CB934101)National Natural Science Foundation of China(21433002,21573046)+1 种基金China Postdoctoral Science Foundation(2016M601492)International Science and Technology Cooperation Projects of Guangxi(15104001-5)~~
文摘Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.