Chemical and physical mutagenesis has been used to increase genetic variability in crop plants. More than 430 new varieties have been derived as mutants of rice (Oryza sativa L.) via the application of different mutag...Chemical and physical mutagenesis has been used to increase genetic variability in crop plants. More than 430 new varieties have been derived as mutants of rice (Oryza sativa L.) via the application of different mutagenic agents. Chemical mutagens such as ethyl methane sulphonate (EMS), diepoxybutane-derived (DEB), sodium azide and irradiation (Gamma rays, X-rays and fast neutrons) have been widely used to induce a large number of functional variations in rice and others crops. Among chemical mutagens, the alkylating agent, ethyl methane sulfonate (EMS) is the most commonly used in plants as it causes a high frequency of nucleotide substitutions, as detected in different genomes. In this study, seeds of potential genotype of the popular variety, (Oryza sativa L. spp. Indica cv. MR219) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1%, 1.25%, 1.5% and 2%. Sensitivity to EMS was determined by various measurements on the M1 generation. As concentration of applied EMS increased, will decrease in germination, seedling height, root length and emergence under field conditions was observed in M1 generation as compared to the non-treatment control. Plant height and root length also decreased with increases in EMS mutagenesis in an approximately linear fashion. The LD25 and LD50 values were observed based on growth reduction of seedlings after EMS treatment with 0.25% and 0.50% on the rice variety (Oryza sativa L. spp. Indica cv. MR219).展开更多
Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introduc...Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.展开更多
文摘Chemical and physical mutagenesis has been used to increase genetic variability in crop plants. More than 430 new varieties have been derived as mutants of rice (Oryza sativa L.) via the application of different mutagenic agents. Chemical mutagens such as ethyl methane sulphonate (EMS), diepoxybutane-derived (DEB), sodium azide and irradiation (Gamma rays, X-rays and fast neutrons) have been widely used to induce a large number of functional variations in rice and others crops. Among chemical mutagens, the alkylating agent, ethyl methane sulfonate (EMS) is the most commonly used in plants as it causes a high frequency of nucleotide substitutions, as detected in different genomes. In this study, seeds of potential genotype of the popular variety, (Oryza sativa L. spp. Indica cv. MR219) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1%, 1.25%, 1.5% and 2%. Sensitivity to EMS was determined by various measurements on the M1 generation. As concentration of applied EMS increased, will decrease in germination, seedling height, root length and emergence under field conditions was observed in M1 generation as compared to the non-treatment control. Plant height and root length also decreased with increases in EMS mutagenesis in an approximately linear fashion. The LD25 and LD50 values were observed based on growth reduction of seedlings after EMS treatment with 0.25% and 0.50% on the rice variety (Oryza sativa L. spp. Indica cv. MR219).
基金This work was supported by the National Key Research and Development Program of China(2022YFF1002300)the Quancheng‘5150’Talent Program,China(07962021047)the Agriculture Applied Technology Initiative of Jinan Government,China(CX202113).
文摘Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.