Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati...Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels.展开更多
Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks obs...Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.展开更多
To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical compositio...To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical composition,chemical structures,and mechanical properties of the fiber samples were analyzed to explore the mechanism of the degumming process.It was found that the EG degumming process could be divided into the main degumming stage(heating) and the supplementary degumming stage(insulation).The removal rates of hemicellulose and lignin in the main degumming stage were 70.56% and 60.17%,respectively.In the supplementary degumming stage,9.95% hemicellulose and 25.39% lignin were removed.It is confirmed that EG can separate hemp fibers effectively with less damage,which holds great potential for the biomass fiber separation technology.展开更多
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio...A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials.展开更多
Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylen...Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions.展开更多
This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of...This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .展开更多
The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic volta...The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.展开更多
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure a...Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.展开更多
An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [B...An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [Bmim]X to [Bmim]OH,amount of ionic liquid,molar ratio of water to ethylene carbonate,reaction tem-perature,pressure and reaction time,were investigated systematically. Excellent yield(>93%) and high selectivity(99.5%) of ethylene glycol were achieved. Under the optimum reaction conditions,the ionic liquid system could be reused at least five times and the selectivity of ethylene glycol remained higher than 99.5%.展开更多
An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper ca...An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.展开更多
The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. I...The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.展开更多
In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were...In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials.展开更多
The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is d...The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.展开更多
Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane...Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).展开更多
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d...High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.展开更多
Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as ...Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.展开更多
The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized ...The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry(DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface,but also the pha...展开更多
A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used...A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0-8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.展开更多
基金supported by the National Natural Science Foundation of China(51976112,52206264)special Project Fund of“Taishan Scholar”of Shandong Province(tsqn202103066)Natural Science Foundation of Shandong Province(ZR2022ME109)。
文摘Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels.
文摘Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232020A-07)。
文摘To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical composition,chemical structures,and mechanical properties of the fiber samples were analyzed to explore the mechanism of the degumming process.It was found that the EG degumming process could be divided into the main degumming stage(heating) and the supplementary degumming stage(insulation).The removal rates of hemicellulose and lignin in the main degumming stage were 70.56% and 60.17%,respectively.In the supplementary degumming stage,9.95% hemicellulose and 25.39% lignin were removed.It is confirmed that EG can separate hemp fibers effectively with less damage,which holds great potential for the biomass fiber separation technology.
基金financially supported by Mahasarakham University。
文摘A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials.
基金Fujian External Cooperation project of Natural Science Foundation,China(No.2022I0042)。
文摘Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions.
文摘This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .
基金Projects(51274108,21263007,51204080)supported by the National Natural Science Foundation of ChinaProject(2011FA009)supported by the Applied Research Foundation of Yunnan Province,ChinaProject(14118441)supported by the Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
文摘Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.
基金Supported by the National High Technology Research and Development Program of China(2006AA06Z317) National Natural Science Foundation of China(20876162)+3 种基金 National Basic Research Program of China(2009CB219901) National Key Technology Research and Development Program(2008BAF33B04) National Science Fund of China(21006117) Science and Technology Project of Beijing(Y090081135)
文摘An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [Bmim]X to [Bmim]OH,amount of ionic liquid,molar ratio of water to ethylene carbonate,reaction tem-perature,pressure and reaction time,were investigated systematically. Excellent yield(>93%) and high selectivity(99.5%) of ethylene glycol were achieved. Under the optimum reaction conditions,the ionic liquid system could be reused at least five times and the selectivity of ethylene glycol remained higher than 99.5%.
基金financial support from the National Natural Science Foundation of China(21878227,U1510203)。
文摘An efficient ZrO2-doped Cu/SiO2 catalyst was fabricated through hydrolysis precipitation method(HP)and used to produce ethylene glycol(EG)through dimethyl oxalate(DMO)hydrogenation.The states for zirconia on copper catalyst and roles in DMO hydrogenation were investigated through various characterization tools,including N2 physical adsorption,XRD,H2-TPR,Methyl glycolate-TPD-MS,XPS,XAES as well.Compared with common ammonia evaporation and co-precipitation methods used in catalyst preparation,this HP method is found to effectively suppress the agglomeration and further size growth of copper nanoparticles by enhancing the interactions between copper and zirconia species.More importantly,uniform distribution of ZrO2 dopant is achieved due to the pseudo-homogeneous reactions in the mixing step of catalyst preparation.A proper amount of zirconium dopant helps achieve the desirable proportion of Cu+/(Cu++CuO)for surface copper species,especially promotes the production of Cu+species originated from Cu-ZrO2 species at the interface of copper and zirconia particles.In comparison with Cu+species formed from copper phyllosilicates reduction,the Cu+sites derived from Cu-ZrO2 species show higher adsorption ability of MG,an important intermediate species in ethylene glycol production.These adsorbed MG molecules further react with atomic hydrogen shifted from adjacent metallic copper surface,leading to a higher catalytic behavior.For the EG production via DMO hydrogenation,the turnover frequency(TOF)normalized by CuO species on CuZr/SiO2 catalyst is 1.8 times than that of traditional Cu/SiO2 counterpart.Due to the enhanced synergy effect between Cu+and Cuo active sites,a lower activation energy of ester hydrogenation on this ZrO2-doped Cu/SiO2 catalyst is believed to be responsible for the significant improvement.
文摘The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.
基金This work was supported by the National Basic Science Research and Development Grants (973) of China (No.G1999064705) and the National High Technology Project (863) of China (No. 2002AA326030).
文摘In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials.
基金the National Natural Science Foundation of China(21576272)“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA 21030600,Science and Technology Service Network Initiative,Chinese Academy of Sciences(KFJ-STS-QYZD-138).
文摘The separation of ethylene glycol(EG)and 1,2-butanediol(1,2-BDO)azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance.Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable.In this paper,NaY zeolite was used to separate 1,2-BDO from EG,and its adsorption properties was then investigated.The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well,and the NaY zeolite absorbent favored EG more than 1,2-BDO.The Grand Canonical Monte Carlo(GCMC)and molecular dynamics(MD)simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions.It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations.The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration.At last,the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43,verified that the NaY zeolite could effectively separate EG from 1,2-BDO.This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.
基金Supported by the National Science and Technology Supporting Plan Through Contract, China(No.2011BAD22B06)the Zhejiang Provincial Natural Science Foundation, China(No. R1110089)+2 种基金the Fundamental Research Funds for the Central Univer-sities of China(No.2011FZA4012)the Research Fund for the Doctoral Program of Higher Education of China (No.20090101110034)the Zhejiang Provincial Key Science and Technology Innovation Team, China(No.2009R50012)
文摘Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).
基金supported by the 863 program(No.2006AA03Z233)973 program(No.2009CB623402) of China
文摘High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.
基金The authors are Indebted to the National Basic Science Rescarch and Development Grants(973)(No.1999054306).
文摘Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.
基金Henan Innovation Project for University Prominent Research Talents(“HAIPURT”)program.
文摘The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry(DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface,but also the pha...
基金We would like to acknowledge the support from the Ministry of Science and Technology of China(2001BA310A).
文摘A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4) as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0-8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.