Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-fre...As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.展开更多
The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispers...The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispersion, bentonite inhibition and contact angle tests. The inhibition became stronger as contact angle and PEG concentration increased. A modified cuttings hot-rolling dispersion experiment suggested that these molecular systems did not act through the thermally activated mud emulsion(TAME) mechanism. The interaction of the PEG/K^(+) with clay samples was investigated through adsorption studies and by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The adsorption isotherms showed that the presence of K^(+) increased the PEG affinity for the clay surface. This inhibition effect was accompanied by a reduction of the bentonite hydration with PEG adsorption, evidenced by FT-IR, TGA and differential thermogravimetric(DTG) curves. XRD patterns were conclusive in showing that the presence of K^(+) ions limited the expansion of the clay interlamellar region to only one PEG layer, and the terminal hydrophobic segments of the PEG chains turned out to be determinant in enhancement of the inhibitory efficiency. The cuttings hot-rolling dispersion was carried out on water-base drilling fluid with PEG/K^(+), which proved the inhibition performance of PEG/K^(+) in oil field drilling.展开更多
The reactor unit for one-stage technology for production of concentrated ethylene glycol-water solutions is described.Such solutions could be useful for production of automotive antifreezes. The technology is based on...The reactor unit for one-stage technology for production of concentrated ethylene glycol-water solutions is described.Such solutions could be useful for production of automotive antifreezes. The technology is based on the highly selective hydration ofethylene oxide in the presence of heterogeneous catalyst-anion-exchange resin in HCO3-/CO/3/2-_form. The mathematical model of reactor allowed evaluating of economical benefit in comparison with conventional method.展开更多
The effects of cerium substitution,use of additives,and heating temperature on the chemical composition and catalytic activity of iron phosphate were evaluated.Iron-cerium phosphate was prepared from iron nitrate,ammo...The effects of cerium substitution,use of additives,and heating temperature on the chemical composition and catalytic activity of iron phosphate were evaluated.Iron-cerium phosphate was prepared from iron nitrate,ammonium cerium nitrate,and sodium phosphate in ethylene glycol using sodium dodecyl-sulfate or acetylacetone as additive.The chemical composition,particle shape and size distribution of the obtained samples were respectively evaluated based on ICP and XRD,SEM,and laser diffraction/scattering analysis.The catalytic activity was evaluated based on the decomposition of the complex formed from formaldehyde,ammonium acetate,and acetylacetone.XRD peaks corresponding to FePO_(4) were observed for the samples heated at 600℃whereas samples treated at lower temperatures were amorphous.Iron-cerium phosphates heated at 200℃and 400℃exhibited high catalytic activity for the decomposition of the aforementioned complex.展开更多
An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards for production/transportation systems, and substantial economic risks. Hydrate inhibit...An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards for production/transportation systems, and substantial economic risks. Hydrate inhibition with different inhibitors such as, methanol, ethylene glycol (EG), triethylene glycol (TEG), and sodium chloride solution continues to play a critical role in many operations. An understanding of when the hydrates form in the presence of these hydrate inhibitors, is therefore necessary to overcome hydrate problems. Several thermodynamic models have been proposed for predicting the hydrate formation conditions in aqueous solutions containing methanol/glycols and electrolytes. However, available models have limitations that include the types of liquid, compositions of fluids, and inhibitors used. The aim of this study is to develop a simple-to-use correlation for accurate prediction of hydrate-forming pressures of pure alkanes in the presence of different hydrate inhibitors, where the obtained results illustrate good agreement with the reported experimental data.展开更多
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
基金supported by the National Natural Science Foundation (No. 50704028, 50904053)the Project 863 (No.2006AA09Z316)+1 种基金the Fundamental Research Funds for the Central Universities (No. CUGL100410)supported by the Opening Project of National Laboratory on Scientific Drilling, China University of Geosciences at Beijing (No. NLSD200901)
文摘As the oil and gas industries continue to increase their activity in deep water, gas hydrate hazards will become more serious and challenging, both at present and in the future. Accurate predictions of the hydrate-free zone and the suitable addition of salts and/or alcohols in preparing drilling fluids are particularly important both in preventing hydrate problems and decreasing the cost of drilling operations. In this paper, we compared several empirical correlations commonly used to estimate the hydrate inhibition effect of aqueous organic and electrolyte solutions using experiments with ethylene glycol (EG) as a hydrate inhibitor. The results show that the Najibi et al. correlation (for single and mixed thermodynamic inhibitors) and the Ostergaard et al. empirical correlation (for single thermodynamic inhibitors) are suitable for estimating the hydrate safety margin of oil-based drilling fluids (OBDFs) in the presence of thermodynamic hydrate inhibitors. According to the two correlations, the OBDF, composed of 1.6 L vaporizing oil, 2% emulsifying agent, 1% organobentonite, 0.5% SP-1, 1% LP-1, 10% water and 40% EG, can be safely used at a water depth of up to 1900 m. However, for more accurate predictions for drilling fluids, the effects of the solid phase, especially bentonite, on hydrate inhibition need to be considered and included in the application of these two empirical correlations.
基金The authors gratefully acknowledge to ANP(Brazilian Petroleum National Agency)COLFUTURO(Foundation for the future of Colombia)for the financial support.
文摘The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispersion, bentonite inhibition and contact angle tests. The inhibition became stronger as contact angle and PEG concentration increased. A modified cuttings hot-rolling dispersion experiment suggested that these molecular systems did not act through the thermally activated mud emulsion(TAME) mechanism. The interaction of the PEG/K^(+) with clay samples was investigated through adsorption studies and by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The adsorption isotherms showed that the presence of K^(+) increased the PEG affinity for the clay surface. This inhibition effect was accompanied by a reduction of the bentonite hydration with PEG adsorption, evidenced by FT-IR, TGA and differential thermogravimetric(DTG) curves. XRD patterns were conclusive in showing that the presence of K^(+) ions limited the expansion of the clay interlamellar region to only one PEG layer, and the terminal hydrophobic segments of the PEG chains turned out to be determinant in enhancement of the inhibitory efficiency. The cuttings hot-rolling dispersion was carried out on water-base drilling fluid with PEG/K^(+), which proved the inhibition performance of PEG/K^(+) in oil field drilling.
文摘The reactor unit for one-stage technology for production of concentrated ethylene glycol-water solutions is described.Such solutions could be useful for production of automotive antifreezes. The technology is based on the highly selective hydration ofethylene oxide in the presence of heterogeneous catalyst-anion-exchange resin in HCO3-/CO/3/2-_form. The mathematical model of reactor allowed evaluating of economical benefit in comparison with conventional method.
文摘The effects of cerium substitution,use of additives,and heating temperature on the chemical composition and catalytic activity of iron phosphate were evaluated.Iron-cerium phosphate was prepared from iron nitrate,ammonium cerium nitrate,and sodium phosphate in ethylene glycol using sodium dodecyl-sulfate or acetylacetone as additive.The chemical composition,particle shape and size distribution of the obtained samples were respectively evaluated based on ICP and XRD,SEM,and laser diffraction/scattering analysis.The catalytic activity was evaluated based on the decomposition of the complex formed from formaldehyde,ammonium acetate,and acetylacetone.XRD peaks corresponding to FePO_(4) were observed for the samples heated at 600℃whereas samples treated at lower temperatures were amorphous.Iron-cerium phosphates heated at 200℃and 400℃exhibited high catalytic activity for the decomposition of the aforementioned complex.
文摘An inherent problem with natural gas production or transmission is the formation of gas hydrates, which can lead to safety hazards for production/transportation systems, and substantial economic risks. Hydrate inhibition with different inhibitors such as, methanol, ethylene glycol (EG), triethylene glycol (TEG), and sodium chloride solution continues to play a critical role in many operations. An understanding of when the hydrates form in the presence of these hydrate inhibitors, is therefore necessary to overcome hydrate problems. Several thermodynamic models have been proposed for predicting the hydrate formation conditions in aqueous solutions containing methanol/glycols and electrolytes. However, available models have limitations that include the types of liquid, compositions of fluids, and inhibitors used. The aim of this study is to develop a simple-to-use correlation for accurate prediction of hydrate-forming pressures of pure alkanes in the presence of different hydrate inhibitors, where the obtained results illustrate good agreement with the reported experimental data.