BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJE...BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJECTIVE: To investigate the regulatory effects of basic fibroblast growth factor (bFGF) on cerebral neuronal CREB expression following ischemia/reperfusion injury. DESIGN, TIME AND SETTING: An immunohistochemical detection experiment was performed at the Department of Anatomy, Shenyang Medical College, between October 2006 and April 2008. MATERIALS: A total of 60 healthy, adult, Wistar rats were randomly divided into three groups: sham-operated (n =12), ischemia/reperfusion (n = 24), and bFGF-treated (n = 24). Rabbit anti-rat CREB (1: 100) and biotin labeled goat anti-rabbit IgG were purchased from the Wuhan Boster Company, China. MetaMorph-evolution MP5.0-BX51 microscopy imaging system was provided by China Medical University, China. METHODS: Rat models of cerebral ischemia/reperfusion injury were developed using the suture method for right middle cerebral artery occlusion. Two-hour ischemia was followed by reperfusion. Rats from the bFGF-treated and ischemia/reperfusion groups were intraperitoneally administered endogenous bFGF (500 IU/mL, 2 000 IU/kg) or an equal amount of physiological saline. Rats from the sham-operated group underwent a similar surgical procedure, without induction of ischemia/reperfusion injury and drug administration. MAIN OUTCOME MEASURES: After 48-hour reperfusion, hippocampal and parietal cortical neuronal CREB expression was detected by immunohistochemistry, and the absorbance of hippocampal CREB-positive products was determined using MetaMorph-evolutionMP5.0-BX51 microscopy imaging system. RESULTS: The sham-operated group exhibited noticeable CREB expression in hippocampal and parietal cortical neurons. In the ischemia/reperfusion group, the CREB expression was discrete and neurons were poorly arranged. The bFGF-treated group exhibited increased CREB expression and better neuronal arrangement compared with the ischemia/reperfusion group. The mean absorbance of CREB-immunoreactive products in the hippocampus and parietal cortex was significantly higher in the ischemia/reperfusion group than in the sham-operated group (P 〈 0.05), and significantly higher in the bFGF-treated group than in the ischemia/reperfusion group (P 〈 0.05). CONCLUSION: bFGF significantly upregulates CREB expression in hippocampal and parietal cortical neurons following ischemia/reperfusion injury.展开更多
Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested th...Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.展开更多
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs ...The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely...Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops.展开更多
In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton p...In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jas- monic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing re- sulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the tran- scription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.展开更多
Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant developme...Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant development through interaction with different stress responsive pathways. Previously, we revealed that overexpression of TERF1 in tobacco activates a cluster gene expression through interacting with GCC box and dehydration responsive element (DRE), resulting in enhanced sensitivity to abscisic acid (ABA) and tolerance to drought, and dark green leaves of mature plants, indicating that TERF1 participates in the integration of ethylene and osmotic responses. Here we further report that overexpression of TERF1 confers sugar response in tobacco. Analysis of the novel isolated tomato TERF1 promoter provides information indicating that there are many cis-acting elements, including sugar responsive elements (SURE) and W box, suggesting that TERF1 might be sugar inducible. This prediction is confirmed by results of reverse transcription-polymerase chain reaction amplification, indicating that transcripts of TERF1 are accumulated in tomato seedlings after application of glucose. Further investigation indicates that the expression of TERF1 in tobacco enhances sensitivity to glucose during seed germination, root and seedling development, showing a decrease of the fresh weight and root elongation under glucose treatment. Detailed investigations provide evidence that TERF1 interacts with the sugar responsive cis-acting element SURE and activates the expression of sugar response genes, establishing the transcriptional regulation of TERF1 in sugar response. Therefore, our results deepen our understanding of the glucose response mediated by the ERF protein TERF1 in tobacco.展开更多
Objective: To investigate the effect and molecular mechanism of Tiantai No.1 (天泰1号), a compound Chinese herbal preparation, for the prevention and reduction of neurotoxicity induced by betaamyloid peptides (Ab...Objective: To investigate the effect and molecular mechanism of Tiantai No.1 (天泰1号), a compound Chinese herbal preparation, for the prevention and reduction of neurotoxicity induced by betaamyloid peptides (Abeta) in vitro and its effects on nuclear factor-κB (NF-κB) and cAMP responsive element-binding protein (CREB) pathways using the gene transfection technique. Methods: B104 neuronal cells were used to examine the effects of Tiantai No.1 on lowering the neurotoxicity induced by Abeta. The cells were pre-treated with Tiantai No.1 at doses of 50, 100,150, or 200μg/mL respectively for 3 days and co-treated with Tiantai No.1 and beta-amyloid peptidel-40 (Aβ 1-40, 10 μmol/L) for 48 h or post-treated with Tiantai No.1 for 48 h after the cells were exposed to beta-amyloid peptides25-35 (Aβ 25-35) for 8 h. In gene transfection assays, cells were treated with Tiantai No.1 at 50 μg/mL and 150μg/mL for 5 days or co-treated with Tiantai No.1 and A 13 1-40 (5 μmo/L) for 3 days after electroporation for the evaluation of NF- κB and CREB expression. Results: Pre-treating and co-treating B104 neuronal cells with Tiantai No.1 lowered the neurotoxicity induced by Abeta, and post-treating with Tiantai No.1 reduced or blocked B104 neuronal apoptotic death induced by Abeta (P〈0.05, P〈0.01). With a dose-dependent relationship, the same treatments increased the expression of NF-κB or CREB in B104 neuronal cells (P〈0.05, P〈0.01). Meanwhile, Tiantai No.1 reduced Aβ-40 induced inhibition on NF-κB expression (P〈0.01). Conclusions: Tiantai No.1 can protect neurons against the neurotoxicity induced by Abeta. The neuroprotective mechanisms may be associated with the activation of NF-κB and cAMP cellular signal pathways.展开更多
基金Scientific Research Foundation of Liaoning Provincial Education Department for Higher Education Institutions, No.05L442
文摘BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJECTIVE: To investigate the regulatory effects of basic fibroblast growth factor (bFGF) on cerebral neuronal CREB expression following ischemia/reperfusion injury. DESIGN, TIME AND SETTING: An immunohistochemical detection experiment was performed at the Department of Anatomy, Shenyang Medical College, between October 2006 and April 2008. MATERIALS: A total of 60 healthy, adult, Wistar rats were randomly divided into three groups: sham-operated (n =12), ischemia/reperfusion (n = 24), and bFGF-treated (n = 24). Rabbit anti-rat CREB (1: 100) and biotin labeled goat anti-rabbit IgG were purchased from the Wuhan Boster Company, China. MetaMorph-evolution MP5.0-BX51 microscopy imaging system was provided by China Medical University, China. METHODS: Rat models of cerebral ischemia/reperfusion injury were developed using the suture method for right middle cerebral artery occlusion. Two-hour ischemia was followed by reperfusion. Rats from the bFGF-treated and ischemia/reperfusion groups were intraperitoneally administered endogenous bFGF (500 IU/mL, 2 000 IU/kg) or an equal amount of physiological saline. Rats from the sham-operated group underwent a similar surgical procedure, without induction of ischemia/reperfusion injury and drug administration. MAIN OUTCOME MEASURES: After 48-hour reperfusion, hippocampal and parietal cortical neuronal CREB expression was detected by immunohistochemistry, and the absorbance of hippocampal CREB-positive products was determined using MetaMorph-evolutionMP5.0-BX51 microscopy imaging system. RESULTS: The sham-operated group exhibited noticeable CREB expression in hippocampal and parietal cortical neurons. In the ischemia/reperfusion group, the CREB expression was discrete and neurons were poorly arranged. The bFGF-treated group exhibited increased CREB expression and better neuronal arrangement compared with the ischemia/reperfusion group. The mean absorbance of CREB-immunoreactive products in the hippocampus and parietal cortex was significantly higher in the ischemia/reperfusion group than in the sham-operated group (P 〈 0.05), and significantly higher in the bFGF-treated group than in the ischemia/reperfusion group (P 〈 0.05). CONCLUSION: bFGF significantly upregulates CREB expression in hippocampal and parietal cortical neurons following ischemia/reperfusion injury.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2018YFD0100703)the Beijing Municipal Science and Technology Project(Grant No.D171100007617001)+4 种基金the Beijing Academy of Agricultural and Forestry Sciences(Grant Nos.QNJJ201733,KJCX20200202)the Ministry of Agriculture and Rural Affairs of China(Grant No.CARS-25)the Beijing Scholar Program(Grant No.BSP026)Beijing Innovation Consortium of Agriculture Research System(Grant No.BAIC10-2020)the Bagui Scholar Program(Grant No.2016A11).
文摘Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.
基金supported by the National Natural Science Foundation of China,No.81202620the Domestic Visiting Scholar Program for Young Talent Teachers in University of Shandong Province
文摘The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.
基金National Key R&D Program of China(2023YFD2300600)National Natural Science Foundation of China(no.31930095)National Modern Agricultural(Citrus)Technology Systems of China(no.CARS-27).
文摘Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops.
文摘In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jas- monic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing re- sulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the tran- scription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.
基金Supported by the National Natural Science Foundation of China (30525034)the State Key Basic Research and Development Plan of China(2006CB100102)
文摘Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant development through interaction with different stress responsive pathways. Previously, we revealed that overexpression of TERF1 in tobacco activates a cluster gene expression through interacting with GCC box and dehydration responsive element (DRE), resulting in enhanced sensitivity to abscisic acid (ABA) and tolerance to drought, and dark green leaves of mature plants, indicating that TERF1 participates in the integration of ethylene and osmotic responses. Here we further report that overexpression of TERF1 confers sugar response in tobacco. Analysis of the novel isolated tomato TERF1 promoter provides information indicating that there are many cis-acting elements, including sugar responsive elements (SURE) and W box, suggesting that TERF1 might be sugar inducible. This prediction is confirmed by results of reverse transcription-polymerase chain reaction amplification, indicating that transcripts of TERF1 are accumulated in tomato seedlings after application of glucose. Further investigation indicates that the expression of TERF1 in tobacco enhances sensitivity to glucose during seed germination, root and seedling development, showing a decrease of the fresh weight and root elongation under glucose treatment. Detailed investigations provide evidence that TERF1 interacts with the sugar responsive cis-acting element SURE and activates the expression of sugar response genes, establishing the transcriptional regulation of TERF1 in sugar response. Therefore, our results deepen our understanding of the glucose response mediated by the ERF protein TERF1 in tobacco.
文摘Objective: To investigate the effect and molecular mechanism of Tiantai No.1 (天泰1号), a compound Chinese herbal preparation, for the prevention and reduction of neurotoxicity induced by betaamyloid peptides (Abeta) in vitro and its effects on nuclear factor-κB (NF-κB) and cAMP responsive element-binding protein (CREB) pathways using the gene transfection technique. Methods: B104 neuronal cells were used to examine the effects of Tiantai No.1 on lowering the neurotoxicity induced by Abeta. The cells were pre-treated with Tiantai No.1 at doses of 50, 100,150, or 200μg/mL respectively for 3 days and co-treated with Tiantai No.1 and beta-amyloid peptidel-40 (Aβ 1-40, 10 μmol/L) for 48 h or post-treated with Tiantai No.1 for 48 h after the cells were exposed to beta-amyloid peptides25-35 (Aβ 25-35) for 8 h. In gene transfection assays, cells were treated with Tiantai No.1 at 50 μg/mL and 150μg/mL for 5 days or co-treated with Tiantai No.1 and A 13 1-40 (5 μmo/L) for 3 days after electroporation for the evaluation of NF- κB and CREB expression. Results: Pre-treating and co-treating B104 neuronal cells with Tiantai No.1 lowered the neurotoxicity induced by Abeta, and post-treating with Tiantai No.1 reduced or blocked B104 neuronal apoptotic death induced by Abeta (P〈0.05, P〈0.01). With a dose-dependent relationship, the same treatments increased the expression of NF-κB or CREB in B104 neuronal cells (P〈0.05, P〈0.01). Meanwhile, Tiantai No.1 reduced Aβ-40 induced inhibition on NF-κB expression (P〈0.01). Conclusions: Tiantai No.1 can protect neurons against the neurotoxicity induced by Abeta. The neuroprotective mechanisms may be associated with the activation of NF-κB and cAMP cellular signal pathways.