A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and ...A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and SEM techniques. The Ni-La/SiO2 catalyst exhibited catalytic activity for the oxidative dehydrogenation of ethane, but with low ethylene selectivity in the absence of methane. The selectivity to ethylene increased with increasing molar ratio of methane in the feed. The carbon deposited on the catalyst surface in the sole ODHE with CO2 was mainly inert carbon, while much more filamentous carbon was formed in the presence of methane. The filamentous carbon was easy to be removed by CO2, which might play a role in improving the conversion of ethane to ethylene. The introduction of methane might affect the equilibrium of the CO2 reforming of ethane and the ODHE with CO2. As a consequence, the synthesis gas produced from CO2 reforming of methane partly inhibited the reaction of ethane and promoted the ODHE with CO2, thus increasing the selectivity of ethylene.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)can produce value-added hydrocarbons from renewable electricity,providing a sustainable and promising approach to meet dual-carbon targets and alleviate the e...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)can produce value-added hydrocarbons from renewable electricity,providing a sustainable and promising approach to meet dual-carbon targets and alleviate the energy crisis.However,it is still challenging to improve the selectivity and stability of the products,especially the C^(2+) products.Here we propose to modulate the electronic structure of copper oxide(CuO)through lattice strain construction by zinc(Zn)doping to improve the selectivity of the catalyst to ethylene.Combined performance and in situ characterization analyses show that the compressive strain generated within the CuO lattice and the electronic structure modulation by Zn doping enhances the adsorption of the key intermediate*CO,thereby increasing the intrinsic activity of CO_(2)RR and inhibiting the hydrogen precipitation reaction.Among the best catalysts had significantly improved ethylene selectivity of 60.5%and partial current density of 500 mA·cm^(–2),and the highest C^(2+) Faraday efficiency of 71.47%.This paper provides a simple idea to study the modulation of CO_(2)RR properties by heteroatom doped and lattice strain.展开更多
基金supported by the NNSFC (Nos. 20976109, 21021001)the Special Research Foundation of Doctoral Education of China (No.20090181110046)
文摘A Ni-La/SiO2 catalyst was prepared through the incipient wetness impregnation method and tested in the oxidative dehydrogenation of ethane (ODHE) with CO2. The fresh and used catalysts were characterized by XRD and SEM techniques. The Ni-La/SiO2 catalyst exhibited catalytic activity for the oxidative dehydrogenation of ethane, but with low ethylene selectivity in the absence of methane. The selectivity to ethylene increased with increasing molar ratio of methane in the feed. The carbon deposited on the catalyst surface in the sole ODHE with CO2 was mainly inert carbon, while much more filamentous carbon was formed in the presence of methane. The filamentous carbon was easy to be removed by CO2, which might play a role in improving the conversion of ethane to ethylene. The introduction of methane might affect the equilibrium of the CO2 reforming of ethane and the ODHE with CO2. As a consequence, the synthesis gas produced from CO2 reforming of methane partly inhibited the reaction of ethane and promoted the ODHE with CO2, thus increasing the selectivity of ethylene.
基金supported by the National Natural Science Foundation of China(Nos.52072152 and 51802126)the Jiangsu University Jinshan Professor Fund,the Jiangsu Specially-Appointed Professor Fund,Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials,Zhenjiang“Jinshan Talents”Project 2021,China PostDoctoral Science Foundation(No.2022M721372)+2 种基金“Doctor of Entrepreneurship and Innovation”in Jiangsu Province(No.JSSCBS20221197)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_3645)Key Research and Development Program of Zhenjiang City(No.CG2023004).
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)can produce value-added hydrocarbons from renewable electricity,providing a sustainable and promising approach to meet dual-carbon targets and alleviate the energy crisis.However,it is still challenging to improve the selectivity and stability of the products,especially the C^(2+) products.Here we propose to modulate the electronic structure of copper oxide(CuO)through lattice strain construction by zinc(Zn)doping to improve the selectivity of the catalyst to ethylene.Combined performance and in situ characterization analyses show that the compressive strain generated within the CuO lattice and the electronic structure modulation by Zn doping enhances the adsorption of the key intermediate*CO,thereby increasing the intrinsic activity of CO_(2)RR and inhibiting the hydrogen precipitation reaction.Among the best catalysts had significantly improved ethylene selectivity of 60.5%and partial current density of 500 mA·cm^(–2),and the highest C^(2+) Faraday efficiency of 71.47%.This paper provides a simple idea to study the modulation of CO_(2)RR properties by heteroatom doped and lattice strain.