期刊文献+
共找到15,106篇文章
< 1 2 250 >
每页显示 20 50 100
NMR SPECTROSCOPIC STUDY ON COPOLYMER OF ETHYLENE-NORBORNENE
1
作者 王齐 宋传磊 +1 位作者 徐君庭 封麟先 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第3期248-253,共6页
A series of ethylene-norbornene copolymers were synthesized using VO (Oft) Cl-2/Al2Et3Cl3 catalytic system and their structure was characterized by H-1-NMR, H-1-H-1 COSY NMR and C-13-NMR. Assignments of NMR spectra we... A series of ethylene-norbornene copolymers were synthesized using VO (Oft) Cl-2/Al2Et3Cl3 catalytic system and their structure was characterized by H-1-NMR, H-1-H-1 COSY NMR and C-13-NMR. Assignments of NMR spectra were given and discussed in detail. 展开更多
关键词 NMR spectroscopy ethylene/norbornene copolymer TACTICITY
下载PDF
B-COPNA resin formation from ethylene tar light fractions:Process development and mechanical exploration by molecular simulation
2
作者 Hongyan Shen Lingrui Cui +4 位作者 Xingguo Wei Yuanqin Zhang Lian Cen Jun Xu Fahai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期118-129,共12页
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar... An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry. 展开更多
关键词 ethylene TAR CROSSLINKING COPNA RESIN Molecular simulation TRANSIENT state
下载PDF
Reaction pathways and selectivity in the chemo-catalytic conversion of cellulose and its derivatives to ethylene glycol:A review
3
作者 Yao Li Yuchun Zhang +2 位作者 Zhiyu Li Huiyan Zhang Peng Fu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期310-331,共22页
Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivati... Biomass-to-ethylene glycol is an effective means to achieve high-value utilisation of cellulose but is hindered by low conversion efficiency and poor catalyst activity and stability.Glucose and cellobiose are derivatives of cellulose conversion to ethylene glycol,and it is found that studying the reaction process of both can help to understand the reaction mechanism of cellulose.It is desirable to develop a reusable,highly active catalyst to convert cellulose into ethylene glycol.This ideal catalyst might have one or more active sites described the conversion steps above.Here,we discuss the catalyst development of celluloseto-ethylene glycol,including tungsten,tin,lanthanide,and other transition metal catalysts,and special attention is given to the reaction mechanism and kinetics for preparing ethylene glycol from cellulose,and the economic advantages of biomass-to-ethylene glycol are briefly introduced.The insights given in this review will facilitate further development of efficient catalysts,for addressing the global energy crisis and climate change related to the use of fossil fuels. 展开更多
关键词 ethylene glycol CELLULOSE Catalyst Retro-aldol condensation HYDROLYSIS Kinetics
下载PDF
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
4
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ethylene Binary mixture Crystal size control Kinetic separation
下载PDF
Unraveling the incompatibility mechanism of ethylene carbonate-based electrolytes in sodium metal anodes
5
作者 Daomin Qin Fangyuan Cheng +4 位作者 Meilian Cao Feiyang Yan Qian Wang Chun Fang Jiantao Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期560-567,共8页
Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.E... Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V. 展开更多
关键词 Na metal batteries ethylene carbonate decomposition Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))cathode Interface engineering ethylene carbonate-free electrolyte
下载PDF
Ca_(2)MnO_(4)-layered perovskite modified by NaNO_(3)for chemical-looping oxidative dehydrogenation of ethane to ethylene
6
作者 Weixiao Ding Kun Zhao +2 位作者 Shican Jiang Zhen Huang Fang He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期53-64,共12页
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the... Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions. 展开更多
关键词 Chemical-looping oxidative DEHYDROGENATION ETHANE ethylene NaNO_(3)-doped Ca_(2)MnO_(4)redox catalyst Layered perovskites
下载PDF
Synthesis of Branched Polyethylene via Bulky α-Diimine Nickel(II)-Catalyzed Ethylene Chain-Walking Polymerization
7
作者 Zhengquan Dong Pei Li +1 位作者 Guoyong Xu Fuzhou Wang 《Open Journal of Organic Polymer Materials》 2024年第1期1-12,共12页
The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, ... The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature. 展开更多
关键词 ethylene Polymerization α-Diimine Ni(II) Complex Chain-Walking Polymerization Branched Polyethylene
下载PDF
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
8
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene Poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Polyvinyl Acetate and Vinyl Acetate-Ethylene Hybrid Adhesive: Synthesis, Characterization, and Properties
9
作者 Ravindra V. Gadhave 《Open Journal of Polymer Chemistry》 2024年第1期1-18,共18页
The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were ... The goal is to develop a hybrid IPN network of polyvinyl acetate (PVAc) and ethylene-vinyl acetate (VAE). In this research work, the vinyl acetate (VAc)/ VAE hybrid emulsion and polyvinyl acetate emulsion (PVAc) were effectively synthesized. Emulsions with various characteristics have been developed by adjusting the weight ratios between the vinyl acetate monomer and the VAE component. The impacts on the mechanical, thermal, and physical properties of the films were investigated using tests for pencil hardness, tensile shear strength, pH, contact angle measurement, differential scanning calorimetry (DSC), and viscosity. When 5.0 weight percent VAE was added, the tensile shear strength in dry conditions decreased by 18.75% after a 24-hour bonding period, the heat resistance decreased by 26.29% (as per WATT 91) and the tensile shear strength decreased by approximately 36.52% in wet conditions (per EN 204). The pristine sample’s results were also confirmed by the contact angle test. The interpenetrating network (IPN) formation in hybrid PVAc emulsion as primary bonds does not directly attach to PVAc and VAE chains. The addition of VAE reduced the mechanical properties (at dry conditions) and heat resistance as per WATT 91. Contact angle analysis demonstrated that PVAc adhesives containing VAE had increased water resistance when compared to conventional PVA stabilised PVAc homopolymer-based adhesives. When compared to virgin PVAc Homo, the water resistance of the PVAc emulsion polymerization was enhanced by the addition of VAE. 展开更多
关键词 ethylene-Vinyl Acetate Dispersion Polyvinyl Acetate HYBRID WOOD ADHESIVE
下载PDF
Synthesis, Structure and Norbornene Polymerization Catalyzed by Palladium Complex Bearing the 1,3-Diphenyl-2-((quinolin-8-ylamino)-methylene)-propane-1,3-dione Ligand 被引量:1
10
作者 俞颖华 陈建新 +3 位作者 孟素芹 李超 兰梅英 张治纯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第4期620-624,共5页
The title complex 1,3-diphenyl-2-((quinolin-8-ylamino)methylene)propane-l,3- dione-palladium was synthesized by the reaction of 1,3-diphenyl-2-((quinolin-8-ylamino)-methylene)propane-1,3-dione with PdCl2, and ... The title complex 1,3-diphenyl-2-((quinolin-8-ylamino)methylene)propane-l,3- dione-palladium was synthesized by the reaction of 1,3-diphenyl-2-((quinolin-8-ylamino)-methylene)propane-1,3-dione with PdCl2, and characterized by IR spectrum and single-crystal X-ray diffraction analysis. The crystal belongs to the orthorhombic system, space group P21212 with a = 21.838(4), b = 8.3952(17), c = 11.497(2) A, V= 2107.9(7) A3, C25H17C1N2O2Pd, Mr = 519.26, Z= 4, Dc= 1.636 g/cm3, H = 1.032 mm-1, F (000) = 1040, the final R = 0.0307 and wR = 0.0778. This compound was investigated for the catalytic behavior towards norbornene (NB) vinyl addition polymerization. And the complex exhibits excellent catalytic activities up to 2.18×10^8g of PNB (tool of Pd)-1 h-1 with high monomer conversion using methylaluminoxane (MAO) as the cocatalyst. 展开更多
关键词 palladium complex norbornene polymerization catalyst crystal structure
下载PDF
Electromechanical Properties of Ethylene Propylene Diene Elastomers: Effect of Ethylene Norbornene Content 被引量:1
11
作者 Patcharee Intanoo Anuvat Sirivat +1 位作者 Ruksapong Kunanuruksapong Wanchai Lerdwijitjarud 《Materials Sciences and Applications》 2011年第5期307-313,共7页
Ethylene propylene diene elastomers (EPDM) of various side chains and molecular weights were prepared as thin discs and the effects of electric field strength and temperature on the electromechanical properties were i... Ethylene propylene diene elastomers (EPDM) of various side chains and molecular weights were prepared as thin discs and the effects of electric field strength and temperature on the electromechanical properties were investigated. The electrical conductivity, the dielectric constant, the storage and loss moduli (G' and G'), the storage modulus response (ΔG’1000 V/mm), and the storage modulus sensitivity (ΔG’1000 V/mm/G’0) of the elastomers of different ethylene norbornene (ENB) contents and molecular weights were measured under electric field strengths varying from 0 V/mm to 1000 V/mm and at temperatures between 300 K and 380 K. The storage modulus response and sensitivity increase with increasing molecular weight and dielectric constant, consistent with the existing theory. However, for the case of EPDMs with different ENB contents, the storage modulus response and sensitivity vary inversely with the dielectric constant. EDPM is potentially a new type of electroactive materials. 展开更多
关键词 Dielectric Elastomer Dipole Moment Polar Molecule UNSATURATED Structure ethylene PROPYLENE DIENE Elastomers (EPDM) ELECTRORHEOLOGICAL Properties
下载PDF
Synthesis of Polynorbornene-Poly(ethylene-co-propylene)Diblock Copolymer
12
作者 Wu, Q Wen, Q Lu, ZJ 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第5期447-450,共4页
Transformation of living ring-opening metathesis polymerization into coordination polymerization by converting the titanacyclobutane group attached to a polynorbornene chain into titanocene alkoxide has been used for ... Transformation of living ring-opening metathesis polymerization into coordination polymerization by converting the titanacyclobutane group attached to a polynorbornene chain into titanocene alkoxide has been used for the synthesis of polynorbornene-poly(ethylene-co-propylene) block copolymer. Preliminary characterizations of the copolymerization products by solvent extraction and C-13 NMR spectrum are reported. 展开更多
关键词 ring-opening metathesis polymerization coordination polymerization diblock copolymer norbornene ethylene PROPYLENE
全文增补中
Analysis of Ethylene Glycol Degumming Process and Characterization of Hemp Fibers 被引量:1
13
作者 池虹 秦智慧 +3 位作者 赵树元 刘柳 张瑞云 程隆棣 《Journal of Donghua University(English Edition)》 CAS 2023年第3期255-260,共6页
To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical compositio... To overcome the shortcomings of traditional degumming process,an efficient and environmentally friendly ethylene glycol(EG) degumming process was adopted to degum hemp fibers.The surface morphology,chemical composition,chemical structures,and mechanical properties of the fiber samples were analyzed to explore the mechanism of the degumming process.It was found that the EG degumming process could be divided into the main degumming stage(heating) and the supplementary degumming stage(insulation).The removal rates of hemicellulose and lignin in the main degumming stage were 70.56% and 60.17%,respectively.In the supplementary degumming stage,9.95% hemicellulose and 25.39% lignin were removed.It is confirmed that EG can separate hemp fibers effectively with less damage,which holds great potential for the biomass fiber separation technology. 展开更多
关键词 hemp fiber degumming process ethylene glycol(EG) HEMICELLULOSE LIGNIN
下载PDF
Attenuation of ethylene signaling increases cotton resistance to a defoliating strain of Verticillium dahliae
14
作者 Tianyi Wang Muhammad Shaban +9 位作者 Junhui Shi Weiran Wang Shiming Liu Xinhui Nie Yu Yu Jie Kong Steven J.Klosterman Xianlong Zhang Alifu Aierxi Longfu Zhu 《The Crop Journal》 SCIE CSCD 2023年第1期89-98,共10页
The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliat... The severity of Verticillium wilt on cotton caused by defoliating strains of Verticillium dahliae has gradually increased and threatens production worldwide. Identification of the molecular components of leaf defoliation may increase cotton tolerance to V. dahliae. Ethylene, a major player in plant physiological processes, is often associated with senescence and defoliation of plants. We investigated the cotton–V.dahliae interaction with a focus on the role of ethylene in defoliation and defense against V. dahliae.Cotton plants inoculated with V. dahliae isolate V991, a defoliating strain, accumulated more ethylene and showed increased disease symptoms than those inoculated with a non-defoliating strain. In cotton with a transiently silenced ethylene synthesis gene(GhACOs) and signaling gene(GhEINs) during cotton–V. dahliae interaction, ethylene produced was derived from cotton and more ethylene increased cotton susceptibility and defoliation rate. Overexpression of AtCTR1, a negative regulator in ethylene signaling, in cotton reduced sensitivity to ethylene and increased plant resistance to V. dahliae.Collectively, the results indicated precise regulation of ethylene synthesis or signaling pathways improve cotton resistant to Verticillium wilt. 展开更多
关键词 COTTON Verticillium dahilae ethylene DEFOLIATION
下载PDF
Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis
15
作者 Tong Li Xiao Zhang +6 位作者 Yun Wei Yaxiu Xu Weiting Liu Hongjian Li Guangxin Yang Aide Wang Xiaoxue Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期659-669,共11页
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis... Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening. 展开更多
关键词 Apple RNA-Seq Fruit ripening ethylene Transcription factor
下载PDF
One-step ethylene separation from ternary C_(2) hydrocarbon mixture with a robust zirconium metal-organic framework
16
作者 Yuan Liu Hanting Xiong +5 位作者 Jingwen Chen Shixia Chen Zhenyu Zhou Zheling Zeng Shuguang Deng Jun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期9-15,共7页
One-step separation of high-purity ethylene(C_(2)H_(4))from C_(2) hydrocarbon mixture is critical but challenging because of the very similar molecular sizes and physical properties of C_(2)H_(4),ethane(C_(2)H_(6)),an... One-step separation of high-purity ethylene(C_(2)H_(4))from C_(2) hydrocarbon mixture is critical but challenging because of the very similar molecular sizes and physical properties of C_(2)H_(4),ethane(C_(2)H_(6)),and acetylene(C_(2)H_(2)).Herein,we report a robust zirconium metal-organic framework(MOF)Zr-TCA(H3TCA=4,4',4"-tricarboxytriphenylamine)with suitable pore size(0.6 nm×0.7 nm)and pore environment for direct C_(2)H_(4) purification from C_(2)H_(4)/C_(2)H_(2)/C_(2)H_(6) gas-mixture.Computational studies indicate that the abundant oxygen atoms and non-polar phenyl rings created favorable pore environments for the preferential binding of C_(2)H_(2) and C_(2)H_(6) over C_(2)H_(4).As a result,Zr-TCA exhibits not only high C_(2)H_(6)(2.28 mmol·g^(-1))and C_(2)H_(2)(2.78 mmol·g^(-1))adsorption capacity but also excellent C_(2)H_(6)/C_(2)H_(4)(2.72)and C_(2)H_(2)/C_(2)H_(4)(5.64)selectivity,surpassing most of one-step C_(2)H_(4) purification MOF materials.Dynamic breakthrough experiments confirm that Zr-TCA can produce high-purity C_(2)H_(4)(>99.9%)from a ternary gas mixture(1/9/90 C_(2)H_(2)/C_(2)H_(6)/C_(2)H_(4))in a single step with a high C_(2)H_(4) productivity of 5.61 L·kg^(-1). 展开更多
关键词 Zirconium metal-organic framework Adsorption Separation One-step ethylene purification
下载PDF
Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors
17
作者 Tengjie Wang Wenkai Li +2 位作者 Xuehui Ge Ting Qiu Xiaoda Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期243-250,共8页
High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the ... High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the transesterification of dimethyl carbonate(DMC)with ethylene glycol(EG)is provided in this work.However,this reaction is so fast that the reaction kinetics,which is essential for the industrial design,is hard to get by the traditional measuring method.In this work,an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst.The effects of flow rate,microreactor diameter,catalyst concentration,reaction temperature,and reactant molar ratio were investigated.An activity-based pseudohomogeneous kinetic model,which considered the non-ideal properties of reaction system,was established to describe the transesterification of DMC with EG.Detailed kinetics data were collected in the first 5 min.Using these data,the parameters of the kinetic model were correlated with the maximum average error of 11.19%.Using this kinetic model,the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%,suggesting its satisfactory prediction performance. 展开更多
关键词 Microreactor KINETICS ethylene carbonate synthesis TRANSESTERIFICATION Sodium methoxide
下载PDF
Effects of Ethylene Tar-Based Pitch Coatings on the Electrochemical Properties of Graphite Anode Materials
18
作者 Xing Yicheng Dai Chang +6 位作者 Wu Qiang Wang Taoxiang Li Zhi Lei Jie Han Haibo Li Kang Wang Youhe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期41-50,共10页
To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coati... To improve the electrochemical performance of graphite anode materials,pitches with various softening points(150℃,180℃,200℃,and 250℃)were prepared from ethylene tar and used to coat graphite through a liquid coating process.The effects of the softening point of the pitch and the coating amount on the microstructure and electrochemical properties of graphite were studied by methods including thermogravimetric analysis,X-ray diffraction,Raman spectroscopy,surface area analysis,scanning electron microscopy,transmission electron microscopy,and electrochemical testing.The graphite particles were coated uniformly by the pyrolytic carbon in the pitch.The coating changed the degree of graphitization,decreased the average specific surface area,and improved the electrochemical performance significantly.The best battery anode performance was obtained when the mass ratio of pitch to graphite was 10%,the heat treatment temperature was 1100℃,and the softening point of the pitch was 250℃.Under the optimum conditions,the irreversible capacity loss in the first cycle at 0.1 C was only 23 mAh/g,and the first Coulombic efficiency reached 94.2%.The capacity retention rate was 98.3%after 100 charge-discharge cycles at 0.1 C. 展开更多
关键词 ethylene tar PITCH GRAPHITE ANODE Li-ion batteries
下载PDF
Synthesis, Structure and Norbornene Polymerization Catalyzed by Nickel(Ⅱ) Complex Bearing N,O-bis(1-(6-ethylpyridin-2-ylimino)-methylenyl)naphthalen-2-ol Ligand 被引量:2
19
作者 兰梅英 梁红 +4 位作者 路学春 邓建琴 程星 陈建新 张治纯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第3期447-452,共6页
The title complex bis{1-{[(6-ethyl-2-pyridinyl)imino]methylenyl}-2-naphthale- nolato-N,O}-nickel(lI) (C36H32NnO2Ni) has been synthesized by the reaction of l-{[(6-ethyl-2- pyridinyl)imino]methylenyl}-2-naphtha... The title complex bis{1-{[(6-ethyl-2-pyridinyl)imino]methylenyl}-2-naphthale- nolato-N,O}-nickel(lI) (C36H32NnO2Ni) has been synthesized by the reaction of l-{[(6-ethyl-2- pyridinyl)imino]methylenyl}-2-naphthalenol with Ni(CH3COO)2·4H2O, and characterized by IR spectrum, elemental analysis and TG. The complicated space structure has been confirmed by single-crystal X-ray diffraction analysis. The crystal belongs to the monoclinic system, space group P21/c with a = 11.410(4), b = 14.382(4), c = 18.121(6) ,A, β = 97.147(6)% V= 2950.5(16)A3, C36H32N4O2Ni, Mr = 611.37, Z = 4, Dc = 1.376 g/cm3, μ = 0.698 mm-1 F(000) = 1280, the final R = 0.0519 and wR = 0.1493 (1 〉2σ(I)). This title compound was used as precatalysts for the polymerisation of norbornene. When activated with MAO, the complex exhibited excellent catalytic activity up to 1.98 × 107 g ofPNB (mol of Ni)-1 h-1 with high monomer conversion. 展开更多
关键词 nickel complex crystal structure catalyst norbornene polymerization
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
20
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID Cotton fiber elongation ethylene ORANGE gene
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部