The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scat...The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization. The DSC and WAXS results show that two crystal structures exist in both mPE and znPE: structure A with higher melting temperature and structure B with lower melting temperature. It was found that original znPE (s-znPE) contains more highly ordered structure A than original mPE (s-mPE) in spite of the higher comonomer content of znPE. Another structure C is also identified because of higher crystallinity measured by WAXS than by DSC and is attributed to the interfacial region. The SAXS data were analyzed with correlation function and two maxima were observed in s-mPE and s-znPE, in agreement with the conclusion of two crystal populations drawn from DSC and WAXS results. These two crystal populations have close long periods in s-mPE, but very different long periods in s-znPE. In contrast, freshly crystallized mPE and znPE (f-mPE and f-znPE) contain only a single crystal population with a broader distribution of long period展开更多
The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the ...The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the melting temperature, the crystallinity and the crystallite size decreased with increasing the content of butene in the copolymers. The copolymers have a high degree of branching, the butene segments are mainly in the amorphous regions of the copolymers, while the polyethylene sequence forms crystal phase acting as crosslinking bondage between the molecules at room temperature. The ethylene-butene copolymers have a low modulus, a low stress and a high strain analogous to the stress-strain behavior of non-cross thermoplastic elastomer.展开更多
The impact properties of two selected metallocene-catalyzed ethylene-butene copolymers and one conventionalcopolymer were evaluated using Izod impact test. It is found that the metallocene-catalyzed copolymer shows su...The impact properties of two selected metallocene-catalyzed ethylene-butene copolymers and one conventionalcopolymer were evaluated using Izod impact test. It is found that the metallocene-catalyzed copolymer shows superior impactproperties. This result was explained on the basis of the more homogeneous inter-molecular composition distribution andnarrower molecular weight distribution, which leads to more homogeneous morphology with fewer defects. Stepwisecrystallization improves the impact properties, especially in the crack propagation process, to a large extent. This is due to thedecrease of entanglements by stepwise crystallization, which is advantageous for the chain slip and shear. The polymer withheterogeneous intra-molecular composition distribution exhibits a more evident improvement of impact properties understepwise crystallization.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29734144 and 59703002) andby the Special Funds for Major State Basic Research Projects (Grant No. G1999064803).
文摘The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization. The DSC and WAXS results show that two crystal structures exist in both mPE and znPE: structure A with higher melting temperature and structure B with lower melting temperature. It was found that original znPE (s-znPE) contains more highly ordered structure A than original mPE (s-mPE) in spite of the higher comonomer content of znPE. Another structure C is also identified because of higher crystallinity measured by WAXS than by DSC and is attributed to the interfacial region. The SAXS data were analyzed with correlation function and two maxima were observed in s-mPE and s-znPE, in agreement with the conclusion of two crystal populations drawn from DSC and WAXS results. These two crystal populations have close long periods in s-mPE, but very different long periods in s-znPE. In contrast, freshly crystallized mPE and znPE (f-mPE and f-znPE) contain only a single crystal population with a broader distribution of long period
基金Supported by the National Natural Science Foundation of China(No.2 98740 39)
文摘The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the melting temperature, the crystallinity and the crystallite size decreased with increasing the content of butene in the copolymers. The copolymers have a high degree of branching, the butene segments are mainly in the amorphous regions of the copolymers, while the polyethylene sequence forms crystal phase acting as crosslinking bondage between the molecules at room temperature. The ethylene-butene copolymers have a low modulus, a low stress and a high strain analogous to the stress-strain behavior of non-cross thermoplastic elastomer.
基金This work was supported by National Natural Science Foundation of China (No. 59703002).
文摘The impact properties of two selected metallocene-catalyzed ethylene-butene copolymers and one conventionalcopolymer were evaluated using Izod impact test. It is found that the metallocene-catalyzed copolymer shows superior impactproperties. This result was explained on the basis of the more homogeneous inter-molecular composition distribution andnarrower molecular weight distribution, which leads to more homogeneous morphology with fewer defects. Stepwisecrystallization improves the impact properties, especially in the crack propagation process, to a large extent. This is due to thedecrease of entanglements by stepwise crystallization, which is advantageous for the chain slip and shear. The polymer withheterogeneous intra-molecular composition distribution exhibits a more evident improvement of impact properties understepwise crystallization.