Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning ...Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.展开更多
Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation ...Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.展开更多
Th/s article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation techni...Th/s article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives.The solubility test of these crosslinked materials were investigated in acidic,alkaline media, distilled water,and certain organic solvents.Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure.Charged characteristic analyses demon- strated typically pH-dependent properties of the crosslinked materials.The adsorption studies were carried out by the batch method at room temperature.Adsorption of heavy metal ions (such as Cu^(2+),Cd^(2+)) and humic acid onto crosslinked samples was found to be strongly pH-dependent.Adsorption kinetic studies indicated the rapid removal of metal ions,and humic acid from the aqueous solutions.Moreover,isothermal adsorption data revealed that Cu^(2+),Cd^(2+), and humic acid were removed by these crosslinked materials with high efficiency.Adsorption isothermal data were interpreted well by the Langmuir equation.These crosslinked carboxymethylated chitosan derivatives indicate favor- able adsorption of metal ions and humic acid.展开更多
The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism h...The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...展开更多
In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β valu...In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β value of fluoropolymer, which increases the crosslinking probability of fluoropolymer. The relationship between crosslinking parameter β and irradiation temperature (T_i)of fluoropolymer is established as follows:β=2.2×10^(-3) T_g+4×10^(-4)(T_g-T_i)+0.206.values of some tluoropolymers calculated from the above expression are in agreement with the experimental values.展开更多
A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accurac...A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accuracy in a radiation environment,a temperature sensor based on optical-fiber sensing technology is proposed.This sensor has a cascade structure composed of a single-mode fiber(SMF),a dispersion-compensation fiber(DCF),a nocore fiber(NCF),and another SMF(SDNS).The DCF and NCF are coated with a polydimethylsiloxane(PDMS)film,which is a heat-sensitive material with high thermal optical and thermal expansion coefficients.In experiments,PDMS was found to produce an irradiation crosslinking effect after irradiation,which improved the temperature sensitivity of the SDNS sensor.The experimental results showed that within a range of 30–100℃,the maximum temperature sensitivity after irradiation was 62.86 pm/℃,and the maximum transmission sensitivity after irradiation was 3.353×10^(-2)dB/℃,which were 1.22 times and 2.267 times the values before irradiation,respectively.In addition,repeated temperature experiments verified that the SDNS sensor coated with the PDMS film had excellent temperature repeatability.Furthermore,it was found that with an increase in the irradiation intensity,the irradiation crosslinking degree of PDMS increased,and the temperature sensitivity of the sensor was improved.The proposed sensor could potentially be applied to temperature measurement in a nuclear-radiation environment.展开更多
Polyamide 1010 is a γ-radiation crosslinkable polymer. After irradiation, it is possible to raise its service temperature up to 240℃ . Network formation greatly changes the crystallization behaviour of the polymer. ...Polyamide 1010 is a γ-radiation crosslinkable polymer. After irradiation, it is possible to raise its service temperature up to 240℃ . Network formation greatly changes the crystallization behaviour of the polymer. In the present work, DSC was used to examine its isothermal crystallization kinetics. It is found that in addition to the necessity of more undercooling and the lowering of crystallization rate, the primary crystallization stage of the irradiated polymer is shortened. This effect is more evident with increasing radiation dose and content of enhanced difunctionai erosslinking agent. However, the crystallization mechanism of the primary stage is not changed as evidenced by the constancy of Avrami exponent. The lamella end surface free energy σ_e calculated according to Hoffman's equation is very sensitive to γ-radiation. It increases abruptly in 2—3 fold even though the radiation dose is not high enough. The origin of this phenomenon may be accounted for in terms of network structure of the polymer.展开更多
A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as woun...A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as wound dressing. The properties of the blended hydrogels were evaluated in terms of gel fraction, swelling behavior, gel strength and water evaporation from hydrogel. Gel fraction of PVA/PVP was saturated at 50 kGy and the achievcd gel fraction was 70%~80%. However, obtained hydrogel was very fragile and produced many bubbles at a dose of 50kGy and above, hence 1%~5% KC were added to give toughness. The rate of gel formation and the toughness of the blended hydrogel were raised after mixing KC. The PVA/PVP/KC blended hydrogel irradiated showed satisfactory properties for wound dressing, it did not produce bubble during irradiation, and it could retard the water evaporation.展开更多
利用γ射线在真空下对聚丙烯腈(PAN)原丝进行辐照处理,研究辐照处理对其预氧化反应的影响。通过凝胶含量测定表明,PAN纤维主要发生交联,200 k Gy时凝胶含量达到80%。联合差示扫描量热仪和傅里叶变换红外光谱仪考察辐照交联对PAN纤维预...利用γ射线在真空下对聚丙烯腈(PAN)原丝进行辐照处理,研究辐照处理对其预氧化反应的影响。通过凝胶含量测定表明,PAN纤维主要发生交联,200 k Gy时凝胶含量达到80%。联合差示扫描量热仪和傅里叶变换红外光谱仪考察辐照交联对PAN纤维预氧化过程的影响,并考察不同预氧化程度PAN纤维的力学性能。研究结果表明,γ射线辐照处理能有效降低PAN纤维预氧化反应的起始温度(~30℃),显著缓和预氧化过程的放热行为;同时,辐照处理还可有效降低预氧化温度,加速预氧化进程。展开更多
基金National Natural Science Foundations of China(Nos.51403112,51273097,51306095)Qingdao Postdoctoral Application Research Funded Project,China(No.2015132)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China
文摘Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.
基金supported by the National Natural Science Foundation of China (Grant No. 50575106)High Technology Project of Jiangsu Province, P. R. China (Grant No. BG2007046)
文摘Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.
文摘Th/s article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives.The solubility test of these crosslinked materials were investigated in acidic,alkaline media, distilled water,and certain organic solvents.Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure.Charged characteristic analyses demon- strated typically pH-dependent properties of the crosslinked materials.The adsorption studies were carried out by the batch method at room temperature.Adsorption of heavy metal ions (such as Cu^(2+),Cd^(2+)) and humic acid onto crosslinked samples was found to be strongly pH-dependent.Adsorption kinetic studies indicated the rapid removal of metal ions,and humic acid from the aqueous solutions.Moreover,isothermal adsorption data revealed that Cu^(2+),Cd^(2+), and humic acid were removed by these crosslinked materials with high efficiency.Adsorption isothermal data were interpreted well by the Langmuir equation.These crosslinked carboxymethylated chitosan derivatives indicate favor- able adsorption of metal ions and humic acid.
基金the National Natural Science Foundation of China (No.20704040).
文摘The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...
文摘In this paper, the effect of irradiation temperature on sol fraction-dose relationship of tluoropolymers was studied. It was found that the increasing of irradiation temperature can result in the decreasing of β value of fluoropolymer, which increases the crosslinking probability of fluoropolymer. The relationship between crosslinking parameter β and irradiation temperature (T_i)of fluoropolymer is established as follows:β=2.2×10^(-3) T_g+4×10^(-4)(T_g-T_i)+0.206.values of some tluoropolymers calculated from the above expression are in agreement with the experimental values.
基金the National Natural Science Foundation of China(Nos.62075057 and 11975091)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.21IRTSTHN011).
文摘A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accuracy in a radiation environment,a temperature sensor based on optical-fiber sensing technology is proposed.This sensor has a cascade structure composed of a single-mode fiber(SMF),a dispersion-compensation fiber(DCF),a nocore fiber(NCF),and another SMF(SDNS).The DCF and NCF are coated with a polydimethylsiloxane(PDMS)film,which is a heat-sensitive material with high thermal optical and thermal expansion coefficients.In experiments,PDMS was found to produce an irradiation crosslinking effect after irradiation,which improved the temperature sensitivity of the SDNS sensor.The experimental results showed that within a range of 30–100℃,the maximum temperature sensitivity after irradiation was 62.86 pm/℃,and the maximum transmission sensitivity after irradiation was 3.353×10^(-2)dB/℃,which were 1.22 times and 2.267 times the values before irradiation,respectively.In addition,repeated temperature experiments verified that the SDNS sensor coated with the PDMS film had excellent temperature repeatability.Furthermore,it was found that with an increase in the irradiation intensity,the irradiation crosslinking degree of PDMS increased,and the temperature sensitivity of the sensor was improved.The proposed sensor could potentially be applied to temperature measurement in a nuclear-radiation environment.
文摘Polyamide 1010 is a γ-radiation crosslinkable polymer. After irradiation, it is possible to raise its service temperature up to 240℃ . Network formation greatly changes the crystallization behaviour of the polymer. In the present work, DSC was used to examine its isothermal crystallization kinetics. It is found that in addition to the necessity of more undercooling and the lowering of crystallization rate, the primary crystallization stage of the irradiated polymer is shortened. This effect is more evident with increasing radiation dose and content of enhanced difunctionai erosslinking agent. However, the crystallization mechanism of the primary stage is not changed as evidenced by the constancy of Avrami exponent. The lamella end surface free energy σ_e calculated according to Hoffman's equation is very sensitive to γ-radiation. It increases abruptly in 2—3 fold even though the radiation dose is not high enough. The origin of this phenomenon may be accounted for in terms of network structure of the polymer.
文摘A series of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blended hydrogel with kappa-carrageenan (KC) were prepared by radiation crosslinking with electron beam to improve the properties of hydrogel as wound dressing. The properties of the blended hydrogels were evaluated in terms of gel fraction, swelling behavior, gel strength and water evaporation from hydrogel. Gel fraction of PVA/PVP was saturated at 50 kGy and the achievcd gel fraction was 70%~80%. However, obtained hydrogel was very fragile and produced many bubbles at a dose of 50kGy and above, hence 1%~5% KC were added to give toughness. The rate of gel formation and the toughness of the blended hydrogel were raised after mixing KC. The PVA/PVP/KC blended hydrogel irradiated showed satisfactory properties for wound dressing, it did not produce bubble during irradiation, and it could retard the water evaporation.
文摘利用γ射线在真空下对聚丙烯腈(PAN)原丝进行辐照处理,研究辐照处理对其预氧化反应的影响。通过凝胶含量测定表明,PAN纤维主要发生交联,200 k Gy时凝胶含量达到80%。联合差示扫描量热仪和傅里叶变换红外光谱仪考察辐照交联对PAN纤维预氧化过程的影响,并考察不同预氧化程度PAN纤维的力学性能。研究结果表明,γ射线辐照处理能有效降低PAN纤维预氧化反应的起始温度(~30℃),显著缓和预氧化过程的放热行为;同时,辐照处理还可有效降低预氧化温度,加速预氧化进程。