The synergistic extraction of Pr^3+ from hydrochloric medium using mixture of 2-ethylhexyl phosphonic acid mono- 2-ethylhexyl ester (P507, HL) and 8-Hydroxyquinoline (HQ) in heptane was investigated. The effect o...The synergistic extraction of Pr^3+ from hydrochloric medium using mixture of 2-ethylhexyl phosphonic acid mono- 2-ethylhexyl ester (P507, HL) and 8-Hydroxyquinoline (HQ) in heptane was investigated. The effect of equilibrium of aqueous acidity on extraction of Pr^3+ was discussed. The effect of extractant concentraction, different diluents, equilibrium time and acetate ion concentration oil extraction reaction were also studied. With a method of double-logarithmic slope, composition of the extracted species on 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and 8-Hydroxyquinoline was derived. The result shows that the synergistic extraction system not only overcomes emulsification of 8-Hydroxyquinoline, but also shows perfect capacity of synergistic extraction. The largest synergistic enhancement factor can be calculated to be 5.49 at pH 3.6 for Pr^3+.展开更多
The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and...The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in kerosene as the membrane solution, was studied. As a result, the optimum transport conditions of La(Ⅲ) were obtained as that concentration of HCl solution was 4.0 mol/L, concentration of PC-88A 0.16 mol/L, and volume ratio of membrane to stripping solution 30:30 in the dispersion phase, and pH value 4.0 in the feed phase. Ionic strength had no obvious effect on the transport of La(Ⅲ). Under the optimum conditions, when initial concentration of La(Ⅲ) was 0.8×10-4 mol/L, the transport rate was up to 96.3% during the transport time of 125 min. The kinetic equation was developed based on the law of mass diffusion and theory of interface chemistry. The diffusion coefficient of La(Ⅲ) in the membrane and the thickness of diffusion layer between feed and membrane phases were obtained as 3.20×10-7 m2/s and 3.22×10-5 m, respectively. The calculated results were in good agreement with experimental results.展开更多
文摘The synergistic extraction of Pr^3+ from hydrochloric medium using mixture of 2-ethylhexyl phosphonic acid mono- 2-ethylhexyl ester (P507, HL) and 8-Hydroxyquinoline (HQ) in heptane was investigated. The effect of equilibrium of aqueous acidity on extraction of Pr^3+ was discussed. The effect of extractant concentraction, different diluents, equilibrium time and acetate ion concentration oil extraction reaction were also studied. With a method of double-logarithmic slope, composition of the extracted species on 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and 8-Hydroxyquinoline was derived. The result shows that the synergistic extraction system not only overcomes emulsification of 8-Hydroxyquinoline, but also shows perfect capacity of synergistic extraction. The largest synergistic enhancement factor can be calculated to be 5.49 at pH 3.6 for Pr^3+.
基金Supported by the National Natural Science Foundation of China (No.90401009)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (No.602-210805)
文摘The transport of La(III) through a dispersion supported liquid membrane with polyvinylidene fluoride membrane as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in kerosene as the membrane solution, was studied. As a result, the optimum transport conditions of La(Ⅲ) were obtained as that concentration of HCl solution was 4.0 mol/L, concentration of PC-88A 0.16 mol/L, and volume ratio of membrane to stripping solution 30:30 in the dispersion phase, and pH value 4.0 in the feed phase. Ionic strength had no obvious effect on the transport of La(Ⅲ). Under the optimum conditions, when initial concentration of La(Ⅲ) was 0.8×10-4 mol/L, the transport rate was up to 96.3% during the transport time of 125 min. The kinetic equation was developed based on the law of mass diffusion and theory of interface chemistry. The diffusion coefficient of La(Ⅲ) in the membrane and the thickness of diffusion layer between feed and membrane phases were obtained as 3.20×10-7 m2/s and 3.22×10-5 m, respectively. The calculated results were in good agreement with experimental results.