A novel method for predicting hotspots and coldspots using support vector machine (SVM) based on statistical learning theory is developed. This method is applied to published 303 hot and 48 cold open reading frames ...A novel method for predicting hotspots and coldspots using support vector machine (SVM) based on statistical learning theory is developed. This method is applied to published 303 hot and 48 cold open reading frames (ORFs) in Saccharomyces cerevisiae. The sequence features of general dinucleotide abundance and dinucleotide abundance based on codon usage are extracted, and then the data sets are classified with different parameters and kernel functions combined with the method of two-fold cross validation. The result indicates that 87.47% accuracy can be reached when classifying hot and cold ORF sequences with the kernel of radial basis function combined with dinucleotide abundance based on codon usage.展开更多
Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unkn...Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates:the synaptonemal complex(SC)-independent meiosis and the nuclear dimorphism.Here,we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny.We detect 1021 crossover(CO)events(35.8 per meiosis),corresponding to an overall CO rate of 9.9 cM/Mb.However,gene conversion by non-crossover is rare(1.03 per meiosis)and not biased towards G or C alleles.Consistent with the reported roles of SC in CO interference,we find no obvious sign of CO interference.CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions.Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes.We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.展开更多
Meiotic recombination occurs preferentially at certain regions in the genome referred to as hot spots which are important for generating genetic diversity and proper segregation of chromosomes during meiosis.Although ...Meiotic recombination occurs preferentially at certain regions in the genome referred to as hot spots which are important for generating genetic diversity and proper segregation of chromosomes during meiosis.Although observations concerning individual hotspots have given clues as to the mechanism of recombination initiation,the nature and causes of recombination rate variation in the genome are still little known.A rational solution is to estimate and rank recombination rates along the genome.Therefore,it is a high demand for a database that deposits and integrates those data to provide a systematical repository of genome-wide recombination rates.Homologous recombination hotspots database is a web-based database of meiotic recombination rates,which comprises enormous data and information of human,mouse,rat,D.melanogaster,C.elegans and yeast.Users can query the database in several alternative ways.The database stores various details for every sequence,such as chromosome number,hyperlinks to the respective reference,and the sequence in FASTA format.展开更多
文摘A novel method for predicting hotspots and coldspots using support vector machine (SVM) based on statistical learning theory is developed. This method is applied to published 303 hot and 48 cold open reading frames (ORFs) in Saccharomyces cerevisiae. The sequence features of general dinucleotide abundance and dinucleotide abundance based on codon usage are extracted, and then the data sets are classified with different parameters and kernel functions combined with the method of two-fold cross validation. The result indicates that 87.47% accuracy can be reached when classifying hot and cold ORF sequences with the kernel of radial basis function combined with dinucleotide abundance based on codon usage.
基金supported by the Wuhan Branch,Supercomputing Center,Chinese Academy of Sciences,Chinasupported by the National Aquatic Biological Resource Center(NABRC)+4 种基金supported by the Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(ZDBS-LY-SM026)the National Natural Science Foundation of China(32370457,32122015,32130011,31900316,and 31900339)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0480000)PJA3 grant of ARC Foundation(ARCPJA2021060003830)Equipes 2022 grant of Foundation Recherche Medicale(EQU202203014651).
文摘Meiotic recombination is essential for sexual reproduction and its regulation has been extensively studied in many taxa.However,genome-wide recombination landscape has not been reported in ciliates and it remains unknown how it is affected by the unique features of ciliates:the synaptonemal complex(SC)-independent meiosis and the nuclear dimorphism.Here,we show the recombination landscape in the model ciliate Tetrahymena thermophila by analyzing single-nucleotide polymorphism datasets from 38 hybrid progeny.We detect 1021 crossover(CO)events(35.8 per meiosis),corresponding to an overall CO rate of 9.9 cM/Mb.However,gene conversion by non-crossover is rare(1.03 per meiosis)and not biased towards G or C alleles.Consistent with the reported roles of SC in CO interference,we find no obvious sign of CO interference.CO tends to occur within germ-soma common genomic regions and many of the 44 identified CO hotspots localize at the centromeric or subtelomeric regions.Gene ontology analyses show that CO hotspots are strongly associated with genes responding to environmental changes.We discuss these results with respect to how nuclear dimorphism has potentially driven the formation of the observed recombination landscape to facilitate environmental adaptation and the sharing of machinery among meiotic and somatic recombination.
文摘Meiotic recombination occurs preferentially at certain regions in the genome referred to as hot spots which are important for generating genetic diversity and proper segregation of chromosomes during meiosis.Although observations concerning individual hotspots have given clues as to the mechanism of recombination initiation,the nature and causes of recombination rate variation in the genome are still little known.A rational solution is to estimate and rank recombination rates along the genome.Therefore,it is a high demand for a database that deposits and integrates those data to provide a systematical repository of genome-wide recombination rates.Homologous recombination hotspots database is a web-based database of meiotic recombination rates,which comprises enormous data and information of human,mouse,rat,D.melanogaster,C.elegans and yeast.Users can query the database in several alternative ways.The database stores various details for every sequence,such as chromosome number,hyperlinks to the respective reference,and the sequence in FASTA format.