The relationship between angiogenesis and eukaryotic translation initiation factor 4E (EIF4E) expression level in non Hodgkin lymphoma (NHL) was studied. Mean microvessel density (MVD) and EIF4E were detected in...The relationship between angiogenesis and eukaryotic translation initiation factor 4E (EIF4E) expression level in non Hodgkin lymphoma (NHL) was studied. Mean microvessel density (MVD) and EIF4E were detected in 52 lymph node samples paraffin sections of patients with newly diagnosed NHL by the way of immunohistochemistry. Antisense EIF4E cDNA was cloned into plasmid pcDNA3.1 (+) and transfected into Raji cells. A series of angiogenesis related factors,including vascular endothelial growth factor (VEGF), matrix metalloproteinases 9 (MMP-9) and tissue inhibitor of metalloproteinases-2 (TIMP-2) proteins were detected by Western blot. The results showed that: (1) The Expression of EIF4E and MVD was higher in aggressive lymphomas than in indolent lymphomas(P〈0.05)and the expression of EIF4E was positively correlated with MVD in lymph node of NHL(r=0. 695, P〈0.01). (2) Antisense EIF4E eukaryocytic expression vector (pcDNA3. 1-EIF4Eas) was constructed successfully. (3) EIF4E, VEGF and MMP-9 were expressed at high levels in Raji cells as compared to normal human peripheral blood monocular cells (NHPMC), and blockage of EIF4E expression brought down the expression of VEGF and MMP-9. However, TIMP-2 was undetectable in Rail cells, although a moderate level of TIMP-2 was detected in NHPMC. It was concluded that the increased EIF4E expression was associated with aggressive property of NHL.展开更多
Eukaryotic initiation factor 5A2(eIF5A2),as one of the two isoforms in the family,is reported to be a novel oncogenic protein that is involved in multiple aspects of many types of human cancer.Overexpression or gene a...Eukaryotic initiation factor 5A2(eIF5A2),as one of the two isoforms in the family,is reported to be a novel oncogenic protein that is involved in multiple aspects of many types of human cancer.Overexpression or gene amplification of EIF5A2 has been demonstrated in many cancers.Accumulated evidence shows that eIF5A2 initiates tumor formation,enhances cancer cell growth,increases cancer cell metastasis,and promotes treatment resistance through multiple means,including inducing epithelial–mesenchymal transition,cytoskeletal rearrangement,angiogenesis,and metabolic reprogramming.Expression of eIF5A2 in cancer correlates with poor survival,advanced disease stage,as well as metastasis,suggesting that eIF5A2 function is crucial for tumor development and maintenance but not for normal tissue homeostasis.All these studies suggest that eIF5A2 is a useful biomarker in the prediction of cancer prognosis and serves as an anticancer molecular target.This review focuses on the expression,subcellular localization,post-translational modifications,and regulatory networks of eIF5A2,as well as its biochemical functions and evolving clinical applications in cancer,especially in human digestive system neoplasms.展开更多
AIM: To study the localization and function of a eukaryotic initiation factor 2 (eIF2α)-associated 67-kDa glycoprotein (p67).METHODS: Immunofluorescence staining,35S-Met/Cys metabolic labeling,Western blotting analys...AIM: To study the localization and function of a eukaryotic initiation factor 2 (eIF2α)-associated 67-kDa glycoprotein (p67).METHODS: Immunofluorescence staining,35S-Met/Cys metabolic labeling,Western blotting analysis,sucrose gradient centrifugation and high speed centrifugation were used to determine the localization of proteins in transiently transfected COS-1 cells.Transient co-transfection followed by co-immunoprecipitation was used to study the interaction between p67 and double-stranded RNA (dsRNA)-dependent protein kinase (PKR).Wheat germ agglutinin agarose beads were used to absorb glycosylated proteins.In vivo 32P-labeling followed by immunoprecipitation and Western blotting were used to measure PKR autophosphorylation,eIF2α phosphorylation,and p67 expression in normal and breast cancer cells.RESULTS: The image from immunofluorescence staining showed that p67 was overexpressed in the cytosol but not in the nucleus.In a sucrose gradient,approxi-mately 30% of the overexpressed p67 was bound with ribosomes.p67 interacted with the kinase domain,butnot the dsRNA-binding domains of PKR.Only the glycosylated p67 was associated with the ribosome,and p67 did not compete with PKR for ribosome binding.In breast cancer cells,there was increased autophosphorylation of PKR but no phosphorylation of eIF2α,compared with normal breast cells.α The ratio of glycosylated/deglycosylated p67 was altered in breast cancer cells.CONCLUSION: Glycosylation of p67 is required for its ribosomal association and can potentially inhibit PKR via interaction with the kinase domain of PKR.展开更多
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neuro...The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neurons.In this study,we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling.We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope.Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein,phosphorylated eukaryotic translation initiation factor 2α,and caspase-12 in the endoplasmic reticulum of retinal ganglion cells.These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress.These findings represent a newly discovered mechanism that regulates how valproate protects neurons.展开更多
Eukaryotic translation initiation factor eIF2B,the guanine nucleotide exchange factor(GEF)for eIF2,catalyzes conversion of eIF2·GDP to eIF2·GTP.The eIF2B is composed of five subunits,α,β,γ,δandε,within ...Eukaryotic translation initiation factor eIF2B,the guanine nucleotide exchange factor(GEF)for eIF2,catalyzes conversion of eIF2·GDP to eIF2·GTP.The eIF2B is composed of five subunits,α,β,γ,δandε,within which theεsubunit is responsible for catalyzing the guanine exchange reaction.Here we present the crystal structure of the C-terminal domain of human eIF2Bε(eIF2Bε-CTD)at 2.0-Åresolution.The structure resembles a HEAT motif and three charge-rich areas on its surface can be identified.When compared to yeast eIF2Bε-CTD,one area involves highly conserved AA boxes while the other two are only partially conserved.In addition,the previously reported mutations in human eIF2Bε-CTD,which are related to the loss of the GEF activity and human VWM disease,have been discussed.Based on the structure,most of such mutations tend to destabilize the HEAT motif.展开更多
[Objectives] To study the therapeutic effect and mechanism of New Maixian Powder on ulcerative colitis( UC) rats through observing its regulatory effect on the protein kinase R-like endoplasmic reticulum kinase( PERK)...[Objectives] To study the therapeutic effect and mechanism of New Maixian Powder on ulcerative colitis( UC) rats through observing its regulatory effect on the protein kinase R-like endoplasmic reticulum kinase( PERK)/eukaryotic translation initiation factor-2α( e IF-2α)/nuclear transcription factor-kappa B( NF-κB) signaling pathway. [Methods]First,60 SD rats were randomly divided into normal group,model group,mesalazine group,and New Maixian Powder low,medium and high dose groups,10 rats each group. Then,dextran sulfate sodium( DSS) was used to induce UC rats. The mesalazine group was given 0. 42 g/( kg·d) of mesalazine sustained-release granule suspension,New Maixian Powder low,medium and high dose groups were given 1. 5,3,and 6 g/( kg·d) of New Maixian Powder suspension,respectively,and other groups were given an equal volume of physiological saline,continuous intragastric administration for 14 d. Next,the disease activity index( DAI) of UC rats was evaluated; the expression of NF-κB in serum was measured by enzyme-linked immunosorbent assay( ELISA); the expression of PERK and e IF-2α protein and m RNA in colon tissue was detected by Western blot and real-time quantitative polymerase chain reaction( RT q-PCR). [Results] Compared with the normal group,the DAI score and serum NF-κB level in the model group were significantly higher( P < 0. 05),and PERK and e IF-2α protein and m RNA levels in the colon tissue were increased( P < 0. 05); compared with the model group,the DAI score decreased and serum NF-κB level declined in the New Maixian Powder group,and the expression of PERK and e IF-2α protein and m RNA in New Maixian Powder medium dose and high dose groups declined( P < 0. 05). [Conclusions]New Maixian Powder has good therapeutic effect on UC rats,and its mechanism may be connected with the inhibition of the activation of PERK/e IF-2α/NF-κB signaling pathway.展开更多
A key control point in gene expression is the initiation of protein translation, with a universal stress response being constituted by in- hibitory phosphoryiation of the eukaryotic initiation factor 2α (el F2oL). ...A key control point in gene expression is the initiation of protein translation, with a universal stress response being constituted by in- hibitory phosphoryiation of the eukaryotic initiation factor 2α (el F2oL). In humans, four kinases sense diverse physiological stresses to regulate elF2α to control cell differentiation, adaptation, and survival. Here we develop a computational molecular model of elF2α and one of its kinases, the protein kinase R, to simulate the dynamics of their interaction. Predictions generated by coarse-grained dynamics simulations suggest a novel mode of action. Experimentation substantiates these predictions, identifying a previously unrecognized interface in the protein complex, which is constituted by dynamic residues in both elF2α and its kinases that are crucial to regulate protein translation. These findings call for a reinterpretation of the current mechanism of action of the el F2α kinases and demonstrate the value of conducting computational analysis to evaluate protein function.展开更多
文摘The relationship between angiogenesis and eukaryotic translation initiation factor 4E (EIF4E) expression level in non Hodgkin lymphoma (NHL) was studied. Mean microvessel density (MVD) and EIF4E were detected in 52 lymph node samples paraffin sections of patients with newly diagnosed NHL by the way of immunohistochemistry. Antisense EIF4E cDNA was cloned into plasmid pcDNA3.1 (+) and transfected into Raji cells. A series of angiogenesis related factors,including vascular endothelial growth factor (VEGF), matrix metalloproteinases 9 (MMP-9) and tissue inhibitor of metalloproteinases-2 (TIMP-2) proteins were detected by Western blot. The results showed that: (1) The Expression of EIF4E and MVD was higher in aggressive lymphomas than in indolent lymphomas(P〈0.05)and the expression of EIF4E was positively correlated with MVD in lymph node of NHL(r=0. 695, P〈0.01). (2) Antisense EIF4E eukaryocytic expression vector (pcDNA3. 1-EIF4Eas) was constructed successfully. (3) EIF4E, VEGF and MMP-9 were expressed at high levels in Raji cells as compared to normal human peripheral blood monocular cells (NHPMC), and blockage of EIF4E expression brought down the expression of VEGF and MMP-9. However, TIMP-2 was undetectable in Rail cells, although a moderate level of TIMP-2 was detected in NHPMC. It was concluded that the increased EIF4E expression was associated with aggressive property of NHL.
基金Supported by Natural Science Foundation of Hubei Province,No.2016CFB596Wuhan City Medical Research Project,Nos.WX15B14and WX17Q39Hubei Province Scientific Research Project,No.WJ2015MB137
文摘Eukaryotic initiation factor 5A2(eIF5A2),as one of the two isoforms in the family,is reported to be a novel oncogenic protein that is involved in multiple aspects of many types of human cancer.Overexpression or gene amplification of EIF5A2 has been demonstrated in many cancers.Accumulated evidence shows that eIF5A2 initiates tumor formation,enhances cancer cell growth,increases cancer cell metastasis,and promotes treatment resistance through multiple means,including inducing epithelial–mesenchymal transition,cytoskeletal rearrangement,angiogenesis,and metabolic reprogramming.Expression of eIF5A2 in cancer correlates with poor survival,advanced disease stage,as well as metastasis,suggesting that eIF5A2 function is crucial for tumor development and maintenance but not for normal tissue homeostasis.All these studies suggest that eIF5A2 is a useful biomarker in the prediction of cancer prognosis and serves as an anticancer molecular target.This review focuses on the expression,subcellular localization,post-translational modifications,and regulatory networks of eIF5A2,as well as its biochemical functions and evolving clinical applications in cancer,especially in human digestive system neoplasms.
文摘AIM: To study the localization and function of a eukaryotic initiation factor 2 (eIF2α)-associated 67-kDa glycoprotein (p67).METHODS: Immunofluorescence staining,35S-Met/Cys metabolic labeling,Western blotting analysis,sucrose gradient centrifugation and high speed centrifugation were used to determine the localization of proteins in transiently transfected COS-1 cells.Transient co-transfection followed by co-immunoprecipitation was used to study the interaction between p67 and double-stranded RNA (dsRNA)-dependent protein kinase (PKR).Wheat germ agglutinin agarose beads were used to absorb glycosylated proteins.In vivo 32P-labeling followed by immunoprecipitation and Western blotting were used to measure PKR autophosphorylation,eIF2α phosphorylation,and p67 expression in normal and breast cancer cells.RESULTS: The image from immunofluorescence staining showed that p67 was overexpressed in the cytosol but not in the nucleus.In a sucrose gradient,approxi-mately 30% of the overexpressed p67 was bound with ribosomes.p67 interacted with the kinase domain,butnot the dsRNA-binding domains of PKR.Only the glycosylated p67 was associated with the ribosome,and p67 did not compete with PKR for ribosome binding.In breast cancer cells,there was increased autophosphorylation of PKR but no phosphorylation of eIF2α,compared with normal breast cells.α The ratio of glycosylated/deglycosylated p67 was altered in breast cancer cells.CONCLUSION: Glycosylation of p67 is required for its ribosomal association and can potentially inhibit PKR via interaction with the kinase domain of PKR.
基金supported by the National Natural Science Foundation of China,Nos.30772368(to DH),81371034(to XH)the Key Project of Natural Science Foundation of Shaanxi Province,No.2017JZ025(to DH).
文摘The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neurons.In this study,we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling.We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope.Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein,phosphorylated eukaryotic translation initiation factor 2α,and caspase-12 in the endoplasmic reticulum of retinal ganglion cells.These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress.These findings represent a newly discovered mechanism that regulates how valproate protects neurons.
基金This work was supported by the National Programs for High Technology Research and Development Program(863 Program)(Grant No.2006AA02A316)the National Basic Research Program(973 Program)(Grant Nos.2004CB520801,2006CB910903,2007CB914304,2009CB825501 and 2010CB912301)+1 种基金the Ministry of Science and Technology,National Natural Science Foundation of China(Grant Nos.30721003 and 30870484)the Chinese Academy of Sciences(Grant No.KSCX2-YW-R61).
文摘Eukaryotic translation initiation factor eIF2B,the guanine nucleotide exchange factor(GEF)for eIF2,catalyzes conversion of eIF2·GDP to eIF2·GTP.The eIF2B is composed of five subunits,α,β,γ,δandε,within which theεsubunit is responsible for catalyzing the guanine exchange reaction.Here we present the crystal structure of the C-terminal domain of human eIF2Bε(eIF2Bε-CTD)at 2.0-Åresolution.The structure resembles a HEAT motif and three charge-rich areas on its surface can be identified.When compared to yeast eIF2Bε-CTD,one area involves highly conserved AA boxes while the other two are only partially conserved.In addition,the previously reported mutations in human eIF2Bε-CTD,which are related to the loss of the GEF activity and human VWM disease,have been discussed.Based on the structure,most of such mutations tend to destabilize the HEAT motif.
基金Supported by Science and Technology Program of Zhejiang Province(2016C33085)
文摘[Objectives] To study the therapeutic effect and mechanism of New Maixian Powder on ulcerative colitis( UC) rats through observing its regulatory effect on the protein kinase R-like endoplasmic reticulum kinase( PERK)/eukaryotic translation initiation factor-2α( e IF-2α)/nuclear transcription factor-kappa B( NF-κB) signaling pathway. [Methods]First,60 SD rats were randomly divided into normal group,model group,mesalazine group,and New Maixian Powder low,medium and high dose groups,10 rats each group. Then,dextran sulfate sodium( DSS) was used to induce UC rats. The mesalazine group was given 0. 42 g/( kg·d) of mesalazine sustained-release granule suspension,New Maixian Powder low,medium and high dose groups were given 1. 5,3,and 6 g/( kg·d) of New Maixian Powder suspension,respectively,and other groups were given an equal volume of physiological saline,continuous intragastric administration for 14 d. Next,the disease activity index( DAI) of UC rats was evaluated; the expression of NF-κB in serum was measured by enzyme-linked immunosorbent assay( ELISA); the expression of PERK and e IF-2α protein and m RNA in colon tissue was detected by Western blot and real-time quantitative polymerase chain reaction( RT q-PCR). [Results] Compared with the normal group,the DAI score and serum NF-κB level in the model group were significantly higher( P < 0. 05),and PERK and e IF-2α protein and m RNA levels in the colon tissue were increased( P < 0. 05); compared with the model group,the DAI score decreased and serum NF-κB level declined in the New Maixian Powder group,and the expression of PERK and e IF-2α protein and m RNA in New Maixian Powder medium dose and high dose groups declined( P < 0. 05). [Conclusions]New Maixian Powder has good therapeutic effect on UC rats,and its mechanism may be connected with the inhibition of the activation of PERK/e IF-2α/NF-κB signaling pathway.
文摘A key control point in gene expression is the initiation of protein translation, with a universal stress response being constituted by in- hibitory phosphoryiation of the eukaryotic initiation factor 2α (el F2oL). In humans, four kinases sense diverse physiological stresses to regulate elF2α to control cell differentiation, adaptation, and survival. Here we develop a computational molecular model of elF2α and one of its kinases, the protein kinase R, to simulate the dynamics of their interaction. Predictions generated by coarse-grained dynamics simulations suggest a novel mode of action. Experimentation substantiates these predictions, identifying a previously unrecognized interface in the protein complex, which is constituted by dynamic residues in both elF2α and its kinases that are crucial to regulate protein translation. These findings call for a reinterpretation of the current mechanism of action of the el F2α kinases and demonstrate the value of conducting computational analysis to evaluate protein function.