The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from ...The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L2-L∞ framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.展开更多
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat...We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,ratio...The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptoti...The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.展开更多
This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian d...This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian decomposition method(TSADM).The existence result is obtained with the help of some xed point theorems,while the uniqueness of the solution is a consequence of the Banach contraction principle.Additionally,we study the stability via the Ulam-Hyers stability for the considered problem.The existing techniques use numerical algorithms for solving the two-dimensional time-space tempered fractional di usion-wave equation,and thus,the results obtained from them are the approximate solution of the problem with high computational and time complexity.In comparison,our proposed method eliminates all the diffculties arising from numerical methods and gives an analytical solution with a straightforward process in just one iteration.展开更多
A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in s...A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.展开更多
We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions ...We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.展开更多
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi...A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.展开更多
In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s...In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.展开更多
The work presented here shows the unsteady inviscid results obtained for the twoand three-dimensional wings which are in rigid and flexible osciliations.The results are generated by a finite volume Euler method. It ...The work presented here shows the unsteady inviscid results obtained for the twoand three-dimensional wings which are in rigid and flexible osciliations.The results are generated by a finite volume Euler method. It is based on theRunge- Kutta time stepping scheme developed by Jameson et al.. To increase the timestep which is limited by the stability of Runge-Kutta scheme, the implicit residualsmoothing which is modified by using variable coefficients io prerent the loss of flowphysics for the unsteady flows is engaged in the calculations. With this unconditionalstable solver the unsteady flws about the wings in arbitrary motion can be receivedefficiently.The two- and three-dimensional rectangular wings which are in rigid andflexible pitching oscillations in the transonic flow are invesigated here, some of thecomputational results are compared with the experimental data. The influence of thereduced frequency for the two kinds of the wings are researched. All the results givenin this work are reasonable.展开更多
We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical s...We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.展开更多
A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm i...A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.展开更多
This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 ...This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.展开更多
基金supported by National Key R&D Program of China(Grant No.2021YFA1000800)National Natural Science Foundation of China(Grant No.12288201)+3 种基金supported by National Natural Science Foundation of China(Grant Nos.12022114 and 12288201)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-031)Youth Innovation Promotion Association of CAS(Grant No.2019002)supported by National Natural Science Foundation of China(Grant No.12201209)。
文摘The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L2-L∞ framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.
基金supported by the National Natural Science Foundation of China(11871218,12071298)in part by the Science and Technology Commission of Shanghai Municipality(21JC1402500,22DZ2229014)。
文摘We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Project supported by the National Natural Science Foundation of China(Grant No.12201329)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24A010002)the Natural Science Foundation of Ningbo(Grant No.2023J126)。
文摘The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
基金supported by the National Natural Science Foundation of China(Nos.12371255 and 11975306)the Natural Science Foundation of Jiangsu Province(No.BK20181351)+3 种基金the Six Talent Peaks Project in Jiangsu Province(No.JY-059)the 333 Project in Jiangsu Provincethe Fundamental Research Fund for the Central Universities(Nos.2019ZDPY07)the Graduate Innovation Program of China University of Mining and Technology(No.2022WLJCRCZL139).
文摘The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.
文摘This article proves the existence and uniqueness conditions of the solution of two-dimensional time-space tempered fractional di usion-wave equation.We nd analytical solution of the equation via the two-step Adomian decomposition method(TSADM).The existence result is obtained with the help of some xed point theorems,while the uniqueness of the solution is a consequence of the Banach contraction principle.Additionally,we study the stability via the Ulam-Hyers stability for the considered problem.The existing techniques use numerical algorithms for solving the two-dimensional time-space tempered fractional di usion-wave equation,and thus,the results obtained from them are the approximate solution of the problem with high computational and time complexity.In comparison,our proposed method eliminates all the diffculties arising from numerical methods and gives an analytical solution with a straightforward process in just one iteration.
文摘A complete mesh free adaptive algorithm (MFAA), with solution adaptation and geometric adaptation, is developed to improve the resolution of flow features and to replace traditional global refinement techniques in structured grids. Unnecessary redundant points and elements are avoided by using the mesh free local clouds refinement technology in shock influencing regions and regions near large curvature places on the boundary. Inviscid compressible flows over NACA0012 and RAE2822 airfoils are computed. Finally numerical results validate the accuracy of the above method.
文摘We couple together existing ideas,existing results,special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations.We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.
文摘A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.
基金supported by 973 Key program and the Key Program from Beijing Educational Commission with No. KZ200910028002Program for New Century Excellent Talents in University (NCET)+4 种基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR-IHLB)The research of Sheng partially supported by NSFC (10671120)Shanghai Leading Academic Discipline Project: J50101The research of Zhang partially supported by NSFC (10671120)The research of Zheng partially supported by NSF-DMS-0603859
文摘In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
文摘The work presented here shows the unsteady inviscid results obtained for the twoand three-dimensional wings which are in rigid and flexible osciliations.The results are generated by a finite volume Euler method. It is based on theRunge- Kutta time stepping scheme developed by Jameson et al.. To increase the timestep which is limited by the stability of Runge-Kutta scheme, the implicit residualsmoothing which is modified by using variable coefficients io prerent the loss of flowphysics for the unsteady flows is engaged in the calculations. With this unconditionalstable solver the unsteady flws about the wings in arbitrary motion can be receivedefficiently.The two- and three-dimensional rectangular wings which are in rigid andflexible pitching oscillations in the transonic flow are invesigated here, some of thecomputational results are compared with the experimental data. The influence of thereduced frequency for the two kinds of the wings are researched. All the results givenin this work are reasonable.
基金supported by the National Natural Science Foundation of China(11301172,11226170)China Postdoctoral Science Foundation funded project(2012M511640)Hunan Provincial Natural Science Foundation of China(13JJ4095)
文摘We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
基金Aeronautical Science Foundation of China (02A52002), National Natural Science Foundation of China(10372043)
文摘A fast hybrid algorithm based on gridless method coupled with finite volume method (FVM) is developed for the solution to Euler equations. Compared with pure gridless method, the efficiency of the hybrid algorithm is improved to the level of finite volume method for most parts of the flow filed arc covered with grid cells. Moreover, the hybrid method is flexible to deal with the configurations as clouds of points are used to cover the region adjacent to the bodies. Mirror satellites and mirror grid cells arc introduced to the interface to accomplish data communication between the different parts of the flow field. The Euler Equations arc spatially discretized with finite volume method and gridless method in mesh and clouds of points respectively, and an explicit four-stage Runge-Kutta scheme is utilized to reach the steady-state solution. Internal flows in channels and external flows over airfoils arc investigated with hybrid method, and the solutions arc comparad to those using pure finite volume method and pure gridless method. Numerical examples show that the hybrid algorithm captures the shock waves accurately, and it is as efficient as fmite volume method.
文摘This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.