We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much ...We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.展开更多
Compatibility conditions of a deformation field in continuum mechanics have been revisited via two different routes. One is to use the deformation gradient, and the other is a pure geometric one. Variations of the dis...Compatibility conditions of a deformation field in continuum mechanics have been revisited via two different routes. One is to use the deformation gradient, and the other is a pure geometric one. Variations of the displacement vector and the displacement density tensor are obtained explicitly in terms of the Riemannian curvature tensor. The explicit relations reconfirm that the compatibility condition is equivalent to the vanishing of the Riemann curvature tensor and reveals the non-Euclidean nature of the space in which the dislocated continuum is imbedded. Comparisons with the theory of Kr¨oner and Le-Stumpf are provided.展开更多
We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-e...We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity.展开更多
The author establishes in this paper the following results: (1) In a quasiconstant curvature manifold M a parallel tensor of type is constant multiple of the metric tensor. (2) On a quasi_constant curvature manifold ...The author establishes in this paper the following results: (1) In a quasiconstant curvature manifold M a parallel tensor of type is constant multiple of the metric tensor. (2) On a quasi_constant curvature manifold there is no nonzero parallel 2_form. Unless the Ricci principal curvature corresponding to the generator of M is equal to zero.展开更多
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression...We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.展开更多
Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients wi...Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients with aphasia. We measured the horizontal and vertical curvature ranges of the arcuate fasciculus in both hemispheres in 12 healthy subjects using diffusion tensor tractography. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus horizontal part were 121.13 ± 5.89 and 25.99 ± 3.01 degrees, respectively, and in the left hemisphere, the values were 121.83 ± 5.33 and 27.40 ± 2.96 degrees, respectively. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus vertical part were 43.97 ± 7.98 and 30.15 ± 3.82 degrees, respectively, and in the left hemisphere, the values were 39.39 ± 4.42 and 24.08 ± 4.34 degrees, respectively. We believe that the measured curvature ranges are important data for localization and quantitative assessment of specific neuronal pathways in patients presenting with arcuate fasciculus abnormalities.展开更多
The“Corollary 1”formulation in SUN,B.H.Incompatible deformation field and Riemann curvature tensor.Applied Mathematics and Mechanics(English Edition),38(3),311–332(2017)is corrected.It can be stated as follows:The ...The“Corollary 1”formulation in SUN,B.H.Incompatible deformation field and Riemann curvature tensor.Applied Mathematics and Mechanics(English Edition),38(3),311–332(2017)is corrected.It can be stated as follows:The symmetric part of the deformation gradient has no contribution to the trace of the displacement density展开更多
Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate me...Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.展开更多
The Weyl curvature of a Finsler metric is investigated.This curvature constructed from Riemannain curvature.It is an important projective invariant of Finsler metrics.The author gives the necessary conditions on Weyl ...The Weyl curvature of a Finsler metric is investigated.This curvature constructed from Riemannain curvature.It is an important projective invariant of Finsler metrics.The author gives the necessary conditions on Weyl curvature for a Finsler metric to be Randers metric and presents examples of Randers metrics with non-scalar curvature.A global rigidity theorem for compact Finsler manifolds satisfying such conditions is proved.It is showed that for such a Finsler manifold,if Ricci scalar is negative,then Finsler metric is of Randers type.展开更多
The objective of this paper is to review the lifespan model. This paper will also suggest four additional general alternative computational methods not mentioned in Kass, R.E. and Vos, P.W. [1] [2]. It is not intended...The objective of this paper is to review the lifespan model. This paper will also suggest four additional general alternative computational methods not mentioned in Kass, R.E. and Vos, P.W. [1] [2]. It is not intended to compare the four formulas to be used in computing the Gaussian curvature. Four different formulas adopted from Struik, D.J. [3] are used and labeled here as (A), (B), (C), and (D). It has been found that all four of these formulas can compute the Gaussian curvature effectively and successfully. To avoid repetition, we only presented results from formulas (B) and (D). One can more easily check other results from formulas (A) and (C).展开更多
Let x : M→S^n+1 be a hypersurface in the (n + 1)-dimensional unit sphere S^n+1 without umbilic point. The Mobius invariants of x under the Mobius transformation group of S^n+1 are Mobius metric, Mobius form, M...Let x : M→S^n+1 be a hypersurface in the (n + 1)-dimensional unit sphere S^n+1 without umbilic point. The Mobius invariants of x under the Mobius transformation group of S^n+1 are Mobius metric, Mobius form, Mobius second fundamental form and Blaschke tensor. In this paper, we prove the following theorem: Let x : M→S^n+1 (n≥2) be an umbilic free hypersurface in S^n+1 with nonnegative Mobius sectional curvature and with vanishing Mobius form. Then x is locally Mobius equivalent to one of the following hypersurfaces: (i) the torus S^k(a) × S^n-k(√1- a^2) with 1 ≤ k ≤ n - 1; (ii) the pre-image of the stereographic projection of the standard cylinder S^k × R^n-k belong to R^n+1 with 1 ≤ k ≤ n- 1; (iii) the pre-image of the stereographic projection of the Cone in R^n+1 : -↑x(u, v, t) = (tu, tv), where (u,v, t)∈S^k(a) × S^n-k-1( √1-a^2)× R^+.展开更多
Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.The...Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.展开更多
The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that...The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that derive of mass-energy source in the space-time and whose contorted image is the spectrum of the torsion field acting in the space-time. The energy of this field is the energy of their second curvature. Likewise, it is assumed that the curvature energy as spectral curvature in the twistor kinematic frame is the curvature in twistor-spinor framework, which is the mean result of this work. This demonstrates the lawfulness of the torsion as the indicium of the gravitational waves in the space-time. A censorship to detect gravitational waves in the space-time is designed using the curvature energy.展开更多
Einstein theorized that Gravity is not a force derived from a potential that acts across a distance. It is a distortion of space and time in which we live by masses and energy. Consistent with Einstein’s theory, a mo...Einstein theorized that Gravity is not a force derived from a potential that acts across a distance. It is a distortion of space and time in which we live by masses and energy. Consistent with Einstein’s theory, a model of space-time curvature modes and associated curvature quanta in slightly warped space-time generated by a light Photon is derived. Both a Schr<span style="white-space:nowrap;">?</span>dinger and a Second Quantized representation of the space-time curvature mode quanta are calculated and are fourth rank tensors. The eigenvalues of these equations are radii of curvature, not energy. The Eigenfunctions are linear functions of the components of the tensor that describes the curvature of space-time.展开更多
We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate t...We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.展开更多
In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-...In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.展开更多
In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a m...In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.展开更多
基金supported by National Natural Science Foundation of China(11301191)supported by MOST(MOST107-2115-M-110-007-MY2)
文摘We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler.
基金Project supported by the National Research Foundation of South Africa(NRF)(No.93918)
文摘Compatibility conditions of a deformation field in continuum mechanics have been revisited via two different routes. One is to use the deformation gradient, and the other is a pure geometric one. Variations of the displacement vector and the displacement density tensor are obtained explicitly in terms of the Riemannian curvature tensor. The explicit relations reconfirm that the compatibility condition is equivalent to the vanishing of the Riemann curvature tensor and reveals the non-Euclidean nature of the space in which the dislocated continuum is imbedded. Comparisons with the theory of Kr¨oner and Le-Stumpf are provided.
基金the National Natural Science Foundation of China(Grant No.11771099)supported by the Hong Kong Research Grant Council(Grant Nos.PolyU 15302114,15300715,15301716,15300717)supported by the Innovation Program of Shanghai Municipal Education Commission。
文摘We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity.
文摘The author establishes in this paper the following results: (1) In a quasiconstant curvature manifold M a parallel tensor of type is constant multiple of the metric tensor. (2) On a quasi_constant curvature manifold there is no nonzero parallel 2_form. Unless the Ricci principal curvature corresponding to the generator of M is equal to zero.
基金Project supported by the Beijing Natural Science Foundation(Grant No.1232026)the Qinxin Talents Program of BISTU(Grant No.QXTCP C201711)+2 种基金the R&D Program of Beijing Municipal Education Commission(Grant No.KM202011232017)the National Natural Science Foundation of China(Grant No.12304190)the Research fund of BISTU(Grant No.2022XJJ32).
文摘We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.
基金supported by the Korea Research Foundation Grant funded by the Korean Government,MOEHRD,No.KRF-2007-313-E00395
文摘Because Broca's area and Wernicke's area in the brain are connected by the arcuate fasciculus, understanding the anatomical location and morphometry of the arcuate fasciculus can help in the treatment of patients with aphasia. We measured the horizontal and vertical curvature ranges of the arcuate fasciculus in both hemispheres in 12 healthy subjects using diffusion tensor tractography. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus horizontal part were 121.13 ± 5.89 and 25.99 ± 3.01 degrees, respectively, and in the left hemisphere, the values were 121.83 ± 5.33 and 27.40 ± 2.96 degrees, respectively. In the right hemisphere, the direct curvature range and indirect curvature range values of the arcuate fasciculus vertical part were 43.97 ± 7.98 and 30.15 ± 3.82 degrees, respectively, and in the left hemisphere, the values were 39.39 ± 4.42 and 24.08 ± 4.34 degrees, respectively. We believe that the measured curvature ranges are important data for localization and quantitative assessment of specific neuronal pathways in patients presenting with arcuate fasciculus abnormalities.
文摘The“Corollary 1”formulation in SUN,B.H.Incompatible deformation field and Riemann curvature tensor.Applied Mathematics and Mechanics(English Edition),38(3),311–332(2017)is corrected.It can be stated as follows:The symmetric part of the deformation gradient has no contribution to the trace of the displacement density
文摘Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.
文摘The Weyl curvature of a Finsler metric is investigated.This curvature constructed from Riemannain curvature.It is an important projective invariant of Finsler metrics.The author gives the necessary conditions on Weyl curvature for a Finsler metric to be Randers metric and presents examples of Randers metrics with non-scalar curvature.A global rigidity theorem for compact Finsler manifolds satisfying such conditions is proved.It is showed that for such a Finsler manifold,if Ricci scalar is negative,then Finsler metric is of Randers type.
文摘The objective of this paper is to review the lifespan model. This paper will also suggest four additional general alternative computational methods not mentioned in Kass, R.E. and Vos, P.W. [1] [2]. It is not intended to compare the four formulas to be used in computing the Gaussian curvature. Four different formulas adopted from Struik, D.J. [3] are used and labeled here as (A), (B), (C), and (D). It has been found that all four of these formulas can compute the Gaussian curvature effectively and successfully. To avoid repetition, we only presented results from formulas (B) and (D). One can more easily check other results from formulas (A) and (C).
文摘Let x : M→S^n+1 be a hypersurface in the (n + 1)-dimensional unit sphere S^n+1 without umbilic point. The Mobius invariants of x under the Mobius transformation group of S^n+1 are Mobius metric, Mobius form, Mobius second fundamental form and Blaschke tensor. In this paper, we prove the following theorem: Let x : M→S^n+1 (n≥2) be an umbilic free hypersurface in S^n+1 with nonnegative Mobius sectional curvature and with vanishing Mobius form. Then x is locally Mobius equivalent to one of the following hypersurfaces: (i) the torus S^k(a) × S^n-k(√1- a^2) with 1 ≤ k ≤ n - 1; (ii) the pre-image of the stereographic projection of the standard cylinder S^k × R^n-k belong to R^n+1 with 1 ≤ k ≤ n- 1; (iii) the pre-image of the stereographic projection of the Cone in R^n+1 : -↑x(u, v, t) = (tu, tv), where (u,v, t)∈S^k(a) × S^n-k-1( √1-a^2)× R^+.
基金supported by Foundation of Natural Sciences of China(11671121,11871197 and 11431009)。
文摘Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues.
文摘The twistor kinematic-energy model of the space-time and the kinematic-energy tensor as the energy-matter tensor in relativity are considered to demonstrate the possible behavior of gravity as gravitational waves that derive of mass-energy source in the space-time and whose contorted image is the spectrum of the torsion field acting in the space-time. The energy of this field is the energy of their second curvature. Likewise, it is assumed that the curvature energy as spectral curvature in the twistor kinematic frame is the curvature in twistor-spinor framework, which is the mean result of this work. This demonstrates the lawfulness of the torsion as the indicium of the gravitational waves in the space-time. A censorship to detect gravitational waves in the space-time is designed using the curvature energy.
文摘Einstein theorized that Gravity is not a force derived from a potential that acts across a distance. It is a distortion of space and time in which we live by masses and energy. Consistent with Einstein’s theory, a model of space-time curvature modes and associated curvature quanta in slightly warped space-time generated by a light Photon is derived. Both a Schr<span style="white-space:nowrap;">?</span>dinger and a Second Quantized representation of the space-time curvature mode quanta are calculated and are fourth rank tensors. The eigenvalues of these equations are radii of curvature, not energy. The Eigenfunctions are linear functions of the components of the tensor that describes the curvature of space-time.
文摘We present a tensor description of Euclidean spaces that emphasizes the use of geometric vectors which leads to greater geometric insight and a higher degree of organization in analytical expressions. We demonstrate the effectiveness of the approach by proving a number of integral identities with vector integrands. The presented approach may be aptly described as absolute vector calculus or as vector tensor calculus.
文摘In this work, we introduce the new concept of fourth rank energy-momentum tensor. We first show that a fourth rank electromagnetic energy-momentum tensor can be constructed from the second rank electromagnetic energy-momentum tensor. We then generalise to construct a fourth rank stress energy-momentum tensor and apply it to Dirac field of quantum particles. Furthermore, since the established fourth rank energy-momentum tensors have mathematical properties of the Riemann curvature tensor, thus it is reasonable to suggest that quantum fields should also possess geometric structures of a Riemannian manifold.
基金Supported by National Natural Science Foundation of China(Grant No.11471100)。
文摘In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.