The microstructural evolution during directional solidification of the Ni-25%Al(mole fraction) alloy was investigated in the range of growth velocity from 10 to 100 μm/s under a given thermal gradient of 10 K/mm. The...The microstructural evolution during directional solidification of the Ni-25%Al(mole fraction) alloy was investigated in the range of growth velocity from 10 to 100 μm/s under a given thermal gradient of 10 K/mm. The solidification microstructures reveal a transition from γ'-β equilibrium eutectic to γ-β metastable eutectic plus β dendrites. A mixed microstructure of γ'-β and γ-β eutectics produced at a growth velocity of 25 μm/s illustrates that the transition occurs during the competitive growth between γ and γ' phases. The growth temperature for each phase was considered to understand the microstructure selection during solidification. The experimental results show that a phase or a microstructure solidifying with the highest temperature under a given growth condition is preferentially selected upon solidification. In addition, both stable eutectic and metastable eutectic are shown to coexist and simultaneously grow in the velocity range between 25 and 60 μm/s due to their similar growth temperatures.展开更多
Al-Si eutectic growth mechanism was investigated in a directionally-solidified AI-1 3 wt% Si alloy with different strontium (Sr) and magnesium (Mg) additions, growth velocities and temperature gradients. Macro- an...Al-Si eutectic growth mechanism was investigated in a directionally-solidified AI-1 3 wt% Si alloy with different strontium (Sr) and magnesium (Mg) additions, growth velocities and temperature gradients. Macro- and micro- scale metallographic analyses revealed that addition level of Sr and Mg, temperature gradient and growth velocity are important factors affecting stability of solidifying AI-Si eutectic front and the final morphology of eutectic grains in the solidified A1-13 wt% Si alloys. By varying (tailoring) these factors, a variety of eutectic grain structures and morphologies such as planar front, cellular structure, a mix of cellular and columnar, or equiaxed dendrites, can be obtained. Increasing temperature gradient, reducing growth velocity, or decreasing Sr and Mg contents is beneficial to stabilizing planar growth front of eutectic grains, which is qualitatively in accordance with constitutional supercooling criterion for binary eutectic growth. In contrast, adding more Sr and Mg, increasing growth velocity, or decreasing temperature gradient produces large constitutional supercooling, leading to columnar-equiaxed transition (CET) of eutectic structure, which can be interpreted on the basis of Hunt's Model. It is also found that both solute concentration and solidification variables have significant impact not only on eutectic growth, but also on gas porosity formation.展开更多
By comparisons of interface growth temperatures of different phases in eutectic systems, competitive growth between the primary phase, halo structure and coupled eutectic has been discussed. The compositions for the f...By comparisons of interface growth temperatures of different phases in eutectic systems, competitive growth between the primary phase, halo structure and coupled eutectic has been discussed. The compositions for the formation of coupled eutectic have been discussed at the coexisting with the primary phase in eutectic under directional solidification. Solidification conditions, such as growth rate and composition required for the formation of the primary phase, halo structure and coupled eutectic have been proposed. Numerical calculation results show that no halo structure formed in directionally solidified Sn-Pb eutectic, but in Al-Si eutectic, competitive growth structures of the primary β-Si phase, α-Al halo structure and coupled eutectic (α+β) may exist at the hypereutectic composition between 12.6% and 25% Si. The calculated results of Al-Si eutectic fit in with the reported experiment results.展开更多
Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wire...Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wires possess obvious unidirectional growth characteristic along its axial direction. The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar. Each columnar grain comprises regular eutectic a-Mg and β-Mg17 Al12 phases, which grew along the axial direction of the wires. The morphology of the eutectic is mainly lamellar, meanwhile rod eutectic exists. The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.展开更多
基金Project(2011-0030801) supported by the National Research Foundation of Korea
文摘The microstructural evolution during directional solidification of the Ni-25%Al(mole fraction) alloy was investigated in the range of growth velocity from 10 to 100 μm/s under a given thermal gradient of 10 K/mm. The solidification microstructures reveal a transition from γ'-β equilibrium eutectic to γ-β metastable eutectic plus β dendrites. A mixed microstructure of γ'-β and γ-β eutectics produced at a growth velocity of 25 μm/s illustrates that the transition occurs during the competitive growth between γ and γ' phases. The growth temperature for each phase was considered to understand the microstructure selection during solidification. The experimental results show that a phase or a microstructure solidifying with the highest temperature under a given growth condition is preferentially selected upon solidification. In addition, both stable eutectic and metastable eutectic are shown to coexist and simultaneously grow in the velocity range between 25 and 60 μm/s due to their similar growth temperatures.
基金financially supported by the National Natural Science Foundation of China(No.50771031)GM Research Foundation(No.GM-RP-07-211)
文摘Al-Si eutectic growth mechanism was investigated in a directionally-solidified AI-1 3 wt% Si alloy with different strontium (Sr) and magnesium (Mg) additions, growth velocities and temperature gradients. Macro- and micro- scale metallographic analyses revealed that addition level of Sr and Mg, temperature gradient and growth velocity are important factors affecting stability of solidifying AI-Si eutectic front and the final morphology of eutectic grains in the solidified A1-13 wt% Si alloys. By varying (tailoring) these factors, a variety of eutectic grain structures and morphologies such as planar front, cellular structure, a mix of cellular and columnar, or equiaxed dendrites, can be obtained. Increasing temperature gradient, reducing growth velocity, or decreasing Sr and Mg contents is beneficial to stabilizing planar growth front of eutectic grains, which is qualitatively in accordance with constitutional supercooling criterion for binary eutectic growth. In contrast, adding more Sr and Mg, increasing growth velocity, or decreasing temperature gradient produces large constitutional supercooling, leading to columnar-equiaxed transition (CET) of eutectic structure, which can be interpreted on the basis of Hunt's Model. It is also found that both solute concentration and solidification variables have significant impact not only on eutectic growth, but also on gas porosity formation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50395102,50401014)the Aeronautical Science Foundation of China(Grant No.01G53038) DPOP Project in NWPU.
文摘By comparisons of interface growth temperatures of different phases in eutectic systems, competitive growth between the primary phase, halo structure and coupled eutectic has been discussed. The compositions for the formation of coupled eutectic have been discussed at the coexisting with the primary phase in eutectic under directional solidification. Solidification conditions, such as growth rate and composition required for the formation of the primary phase, halo structure and coupled eutectic have been proposed. Numerical calculation results show that no halo structure formed in directionally solidified Sn-Pb eutectic, but in Al-Si eutectic, competitive growth structures of the primary β-Si phase, α-Al halo structure and coupled eutectic (α+β) may exist at the hypereutectic composition between 12.6% and 25% Si. The calculated results of Al-Si eutectic fit in with the reported experiment results.
基金the Shaanxi Provincial Natural Science Research Project(No.2003E111)Scientific research project of Education Department of Shaanxi Province(No.07JK358)the Industrialization Cultivation Project of Education Department of Shaanxi Province(No.04JC24).
文摘Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the microstructure was examined. It was found that the wires possess obvious unidirectional growth characteristic along its axial direction. The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar. Each columnar grain comprises regular eutectic a-Mg and β-Mg17 Al12 phases, which grew along the axial direction of the wires. The morphology of the eutectic is mainly lamellar, meanwhile rod eutectic exists. The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.