Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter(POM) and dissolved organic m...Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter(POM) and dissolved organic matter(DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms(dominated by M icrocystis) in a large-shallow eutrophic Chinese lake(Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon(POC, 3.05–15.37 mg/L) and dissolved organic carbon(DOC, 5.48–19.25 mg/L), respectively, with chlorophyll a(Chl a) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.展开更多
Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone Rive...Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.展开更多
Lacustrine sediment played important roles in migration and transformation of its water soluble organic matter(WSOM), and the source and composition of WSOM would affect water trophic status and the fate of pollutants...Lacustrine sediment played important roles in migration and transformation of its water soluble organic matter(WSOM), and the source and composition of WSOM would affect water trophic status and the fate of pollutants. However, we know little about the pathway of WSOM transformation and its driving bacterial communities in lacustrine sediment. In the present study, we investigated the spatial distribution patterns of sediment WSOM and its fluorescent fractions across Lake Chaohu using fluorescence spectroscopy, and explored WSOM compositional structure through our proposed calculated ratios. In addition, we also analyzed sediment bacterial community using Illumina sequencing technology, and probed the possible pathway of sediment WSOM transformation under the mediate of indigenous bacteria. Our results showed that the inflowing rivers affected the spatial distribution patterns of WSOM and its five fractions(including tyrosine-, tryptophan-, fulvic acid-, humic acid-like substances and soluble microbial productions), and sediment WSOM originated from fresh algae detritus or bacterial sources. In parallel, we also found that Proteobacteria(mainly γ-Proteobacteria and δ-Proteobacteria), Firmicutes(mainly Bacilli), Chloroflexi, Acidobacteria, Planctomycetes and Actinobacteria dominate sediment bacterial community. Furthermore, these dominant bacteria triggered sediment WSOM transformation, specifically, the humic acid-like substances could be converted into fulvic acid-like substances, and further degraded into aromatic protein-like and SMP substances. In addition, our proposed ratios(P-L:H-L, Ar-P:SMP and H-L ratio), as supplementary tool, were effective to reveal WSOM composition structure. These results figured out possible pathway of WSOM transformation, and revealed its microbial mechanism in lacustrine sediment.展开更多
Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achie...Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.展开更多
Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the bind...Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.展开更多
By analyzing the enhanced thematic mapper (ETM) images of September 1999, and quality observation data for many consecutive years in several parts of the Donghu Lake in Wuhan, China, the authors discovered a good line...By analyzing the enhanced thematic mapper (ETM) images of September 1999, and quality observation data for many consecutive years in several parts of the Donghu Lake in Wuhan, China, the authors discovered a good linear relation between grey scale (GS) abstracted from ETM b5, b7 images and eutrophication level of the lakes, and extended the study to eight other major lakes in the area of Wu- han by using lake eutrophication models. Based on the in situ monitoring data, we also evaluated the eu- trophication level of the lakes with modified trophic index method brought by M. Aizaki et al. The results of the two methods showed that the most of the lakes were eutrophicated, and even hyper-eutrophicated in some areas. Six of the 8 lakes had very similar trophic state index (TSI) values. Although two of them differed in TSI value, but within an order, while it was different largely from the one by traditional method. The difference of the results between the two methods might have been due to three causative reasons. First, remote sensing technology reflects the overall status of a certain area corresponding to the ETM images in a certain period, but the modified TSI reflects the annual average values of the monitoring spots. Second, the time the ETM images taken is later than that of in situ data. Third, ETM images are affected by clouds, water depth, and suspended matter. In short, remote sensing result agreed greatly with the in situ monitoring data, indicating that remote sensing technology is feasible and effective for moni- toring and evaluating the lake eutrophication in the Wuhan area and it also can be used to evaluate large-scope lake eutrophication.展开更多
Lake eutrophication is recognised as a serious global challenge,and many regional legislative programmes are being made to attempt to relieve nutrient pollution and restore deteriorated lake ecological state.However,i...Lake eutrophication is recognised as a serious global challenge,and many regional legislative programmes are being made to attempt to relieve nutrient pollution and restore deteriorated lake ecological state.However,it is of primary importance to understand the degradation processes and reference conditions.The palaeolimnological approach allows us to use ecological evidences preserved in lake sediments to track the changes of lake trophic status under human impact.Diatoms,a proxy for ecological and limnological change,and pigments,a proxy for algal production and composition,were analysed on a short sediment sequence from Lake Dojran(Republic of North Macedonia and Greece),and their preservation qualities were evaluated before environmental interpretation.Good diatom preservation is inferred mainly from the consistent co-occurrence of robust,highly-silicified taxa and small taxa throughout the sequence.Pigment evaluation of the comparison between wet sediment samples in dark and cold storage and their corresponding dry sediment samples lyophilized immediately after the recovery reveals that sediment restoration conditions are critical for the accuracy of analysis.We show that the increased chlorophyll and xanthophyll pigment concentrations,particularly the siliceous-algae pigment fucoxanthin and diatoxanthin,together with the distinct increase in diatom concentration,indicate accelerated lake eutrophication and a major ecological shift linked to intensified water abstraction practice and agricultural expansion in the late 18th to early 19th century.Evidence of diatom assemblage composition is muted probably by the dominance of widely-tolerant small fragilaroid species in diatom composition and the better competitive ability of cyanobacteria and chlorophytes than diatoms for low light under eutrophic and turbid conditions.This study improves our understanding of recent human-induced environmental change and current ecological restoration target in this lake.展开更多
Lakes are an important component of terrestrial carbon cycling. As the trend of eutrophication in many lakes continues, the mechanisms of organic carbon(OC) burial remain unclear. This paper aims to understand the d...Lakes are an important component of terrestrial carbon cycling. As the trend of eutrophication in many lakes continues, the mechanisms of organic carbon(OC) burial remain unclear. This paper aims to understand the distribution of OC and the effect of trophic level changes on OC burial in Chaohu Lake, a shallow eutrophic lake located in the lower reaches of the Yangtze River, SE China. Two hundred and one surface sediment samples(0–20 cm) and 53 subsurface samples(150–200 cm) from the lake were collected.The OC accumulation rates(OCARs) are relatively low, with an average of 10.01 g/m2/year in the surface sediments. The spatial distribution of the OCARs is similar to that of allochthonous OC. The difference in total phosphate(TP) content between the surface and subsurface sediments(ΔTP) is significantly correlated with the autochthonous OC,suggesting that TP loading is a critical limiting nutrient for the lake's primary productivity.It is concluded that allochthonous OC is the dominant source of total OC in surface sediments compared to autochthonous OC. The primary productivity of Lake Chaohu increased due to increasing nutrient loading. However, the autochthonous OC contributed11% of the total OC in the surface sediments. This could be ascribed to strong mineralization in the water column or surface sediments.展开更多
The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable trans...The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable transition paths to characterize the regime shifts.The most probable transition paths are obtained by minimizing the Freidlin-Wentzell(FW)action functional and Onsager-Machlup(OM)action functional,respectively.The most probable path shows the movement trend of the lake eutrophication system under noise excitation,and describes the global transition behavior of the system.Under the excitation of Gaussian noise,the results show that the stability of the eutrophic state and the oligotrophic state has different results from two perspectives of potential well and the most probable transition paths.Under the excitation of Gaussian white noise and periodic force,we find that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.展开更多
To study the influence of human activity on natural lake, chironomid fauna change in the 700-560cm lake sediment in Quidenham Mere of England associated with chironomid inferred TP presented that the lake experienced ...To study the influence of human activity on natural lake, chironomid fauna change in the 700-560cm lake sediment in Quidenham Mere of England associated with chironomid inferred TP presented that the lake experienced a whole eutrophication process due to human hemp-retting in Post-Medieval based on the history record and pollen analysis, which was confirmed by mollusc and ostracod analysis. However, the response of chironomid and mollusc to retting was the strongest with ostracod a little behind. It proved that cultural eutrophication existed in history and could be recovered by itself despite of some long-term unachievahle destroy. And it was most important for external nutrient to be cut off during lake restoration even in ancient times.展开更多
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain uncl...Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.展开更多
Several studies have suggested the pivotal roles of eutrophic lakes in carbon(C)cycling at regional and global scales.However,how the co-metabolism effect on lake sediment organic carbon(OC)mineralization changes in r...Several studies have suggested the pivotal roles of eutrophic lakes in carbon(C)cycling at regional and global scales.However,how the co-metabolism effect on lake sediment organic carbon(OC)mineralization changes in response to integrated inputs of labile OC and nutrients is poorly understood.This knowledge gap hinders our ability to predict the carbon sequestration potential in eutrophic lakes.Therefore,a 45-day microcosm experiment was conducted to examine the dominant mechanisms that underpin the co-metabolism response to the inputs of labile C and nutrients in lacustrine sediments.Results indicate that the labile C addition caused a rapid increase in the positive co-metabolism effect during the initial stage of incubation,and the co-metabolism effect was positively correlated with the C input level.The positive co-metabolism effect was consistently higher under high C input,which was 152%higher than that under low C input.The higherβ-glucosidase activity after nutrient addition,which,in turn,promoted the OC mineralization in sediments.In addition different impacts of nutrients on the co-metabolism effect under different C inputs were observed.Compared with the low nutrient treatments,the largest co-metabolism effect under high C with high nutrient treatment was observed by the end of the incubation.In the high C treatment,the intensity of the co-metabolism effect(CE)under high nitrogen treatment was 1.88 times higher than that under low nitrogen condition.However,in the low C treatment,the amount of nitrogen had limited impact on co-metabolism effect.Our study thus proved that the microorganisms obviously regulate sediment OC turnover via stoichiometric flexibility to maintain a balance between resources and microbial requirements,which is meaningful for evaluating the OC budget and lake eutrophication management in lacustrine sediments.展开更多
Coexisting floating-leaved and submerged plants experience similar environmental changes but may evolve different patterns of genetic variation.To compare local-scale genetic variation,we collected samples of floating...Coexisting floating-leaved and submerged plants experience similar environmental changes but may evolve different patterns of genetic variation.To compare local-scale genetic variation,we collected samples of floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum coexisting in a disturbed urban lake in China.At the subpopulation level,using microsatellites,M.spicatum had higher clonal diversity than N.peltata.M.spicatum had 28.4%multilocus genotypes(MLGs)shared between subpopulations,but N.peltata had only one MLG shared between two adjacent subpopulations.N.peltata displayed more genetic variation between subpopulations than within subpopulations,but the reverse was true for M.spicatum.Principal components and Bayesian cluster analyses showed that individuals from each subpopulation of N.peltata tended to have relatively close genetic relationships.For M.spicatum,individuals from each subpopulation were genetically scattered with those from other subpopulations.Our results imply that in unpredictable adverse environments M.spicatum may be less subjected to local-deme extinction than N.peltata because of genetically diverse clones at the subpopulation level.This characteristic means that following adverse events,M.spicatum may rapidly restore subpopulation distributions via recolonization and intense gene flow among subpopulations.展开更多
Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention a...Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention and control.Xiao Xingkai Lake is part of and connected to Xingkai(Khanka)Lake,a boundary lake between China and Russia.In this study,we investigated the spatio-temporal variabilities in water quality(i.e.,dissolved oxygen(DO),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(CODMn)and ammonium-nitrogen(NH4+-N))in Xiao Xingkai Lake,from 2012 to 2014,after which a Trophic Level Index was used to evaluate trophic status,in addition to the factors influencing water quality variation in the lake.The DO,TN,TP,CODMn and NH4+-N concentrations were 0.44-15.57,0.16-5.11,0.01-0.45,0.16-48.31,and 0.19-0.78 mg/L,respectively.Compared to the Environmental Quality Standards for surface water(GB 3838-2002)in China,the lake transitioned to an oligotrophic status in 2013 and 2014 from a mesotrophic status in 2012,TN and TP concentrations were the key factors influencing water quality of Xiao Xingkai Lake.Non-para-metric test results showed that sampling time and sites had significant effects on water quality.Water quality was worse in summer and in tourism and aquaculture areas,followed by agricultural drainage areas.Furthermore,lake water trophic status fluctuated between medium eutrophic and light eutrophic status from September 2012 to September 2014,and was negatively correlated with water level.Water quality in tourism and aquaculture sites were medium eutrophic,while in agricultural areas were light eutrophic.According to the results,high water-level fluctuations and anthropogenic activities were the key factor driving variability in physicochemical parameters associated with water quality in Xiao Xingkai Lake.展开更多
[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems...[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems and soil microbes involved in anthropogenic nutrient cycling are very important. DNA-based molecular methods offer new tools for characterization of these mixed communities of mi- croorganisms. However, it is very difficult to remove humic substances, heavy met- als that co-existed with genome DNA representing the microbial community directly from these complex systems and can interfere with subsequent genetic analysis. The potassium dichromate solution was firstly used to remove humic substances. [Results] The steps of removing humic substances and DNA extraction were per- formed simultaneously that improved the speed of extraction to approximately 1 hour and the nucleic acids that were obtained with this method did not need to be washed with 70% ethanol and dissolved directly in sterile water for total bacterial 16S rDNA, nosZ gene of denitrifying bacteria, pmoA of methanotrophs, nifH of nitro- gen-fixing bacteria, amoA of ammonia-oxidizing bacteria and ammonia-oxidizing ar- chaea molecular ecology analyses. [Conclusion] This method could provide a plat- form for preparing a fast sediments DNA extraction.展开更多
Sediments are ultimate sinks of nutrients in lakes that record the pollution history evolutionary processes, and anthropogenic activities of a lake. However, sediments are considered as inner sources of environmental ...Sediments are ultimate sinks of nutrients in lakes that record the pollution history evolutionary processes, and anthropogenic activities of a lake. However, sediments are considered as inner sources of environmental factor changes such as the variation in hydrodynamic conditions because of the nutrients they release. How does this process happen? This study investigates a typical nutrient phosphorus (P) exchange among sediment, suspended particle matter (SPM), and water. Compared with numerical and experimental studies, this study confirms that the critical velocity that occurs at a lower flow rate state exists in the range of 7 to 15 crn/sec. Critical velocity below the critical flow rate promotes the migration of particulate phosphorus (PP) to the SPM. On the other hand, critical velocity above the critical flow rate promotes the release of PP in water.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20131466)the National Natural Science Foundation of China(Nos.31370509,31100363)the Start-up Funds from Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2011QD05)
文摘Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter(POM) and dissolved organic matter(DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms(dominated by M icrocystis) in a large-shallow eutrophic Chinese lake(Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon(POC, 3.05–15.37 mg/L) and dissolved organic carbon(DOC, 5.48–19.25 mg/L), respectively, with chlorophyll a(Chl a) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.
文摘Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.
基金supported by the National Nature Science Foundation of China (No. 51608002)the China National Critical Project for Science and Technology on Water Pollution Prevention and Control (No. 2017ZX07603-003)the Nture Science Foundation of Anhui Province of China (No. 1908085QD167)。
文摘Lacustrine sediment played important roles in migration and transformation of its water soluble organic matter(WSOM), and the source and composition of WSOM would affect water trophic status and the fate of pollutants. However, we know little about the pathway of WSOM transformation and its driving bacterial communities in lacustrine sediment. In the present study, we investigated the spatial distribution patterns of sediment WSOM and its fluorescent fractions across Lake Chaohu using fluorescence spectroscopy, and explored WSOM compositional structure through our proposed calculated ratios. In addition, we also analyzed sediment bacterial community using Illumina sequencing technology, and probed the possible pathway of sediment WSOM transformation under the mediate of indigenous bacteria. Our results showed that the inflowing rivers affected the spatial distribution patterns of WSOM and its five fractions(including tyrosine-, tryptophan-, fulvic acid-, humic acid-like substances and soluble microbial productions), and sediment WSOM originated from fresh algae detritus or bacterial sources. In parallel, we also found that Proteobacteria(mainly γ-Proteobacteria and δ-Proteobacteria), Firmicutes(mainly Bacilli), Chloroflexi, Acidobacteria, Planctomycetes and Actinobacteria dominate sediment bacterial community. Furthermore, these dominant bacteria triggered sediment WSOM transformation, specifically, the humic acid-like substances could be converted into fulvic acid-like substances, and further degraded into aromatic protein-like and SMP substances. In addition, our proposed ratios(P-L:H-L, Ar-P:SMP and H-L ratio), as supplementary tool, were effective to reveal WSOM composition structure. These results figured out possible pathway of WSOM transformation, and revealed its microbial mechanism in lacustrine sediment.
基金Supported by the Science and Technology Research Project of Education Department of Hubei Province(Nos.Q20182502,D20152503)the Innovation Team Project of HBNU of Heavy Metal Pollution Mechanism and Ecological Restoration for Lake-Catchment System,Youth Project of Hubei Natural Science Foundation(No.2018CFB321)the Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S201910513001)。
文摘Dissolved organic matter(DOM)plays a crucial role in both the carbon cycle and geochemical cycles of other nutrient elements,which is of importance to the management and protection of the aquatic environments.To achieve a more comprehensive understanding the characteristics of DOM in the Changjiang(Yangtze)River basin,water samples from four natural lakes(Xiandao,Baoan,Daye,and Qingshan)in southeastern Hubei Province in China with different eutrophication levels were collected and analyzed.The optical characteristics were analyzed using ultraviolet-visible spectrophotometry and excitation-emission matrix spectroscopy coupled with parallel factor analysis.The results show that:(1)two humic-like components(C1 and C2)and two protein-like substances(C3 and C4)of DOM were identified in all waterbodies;(2)C3 originated primarily from the degradation of microalgae and contributed substantially to humic-like components during transformation.C4 was widely present in the Changjiang River basin and its formation was related to microbial activity,rather than algal blooms or seasons.Influenced by the water mixing,the protein-like components were more likely to be transformed by microorganism,whereas humic-like components were more easily to be photobleached;(3)the concentration of DOM and the fluorescence intensity of humic-like components gradually increased with rising lake eutrophication levels.With respect to protein-like components,only C3 showed changes along the eutrophication gradients;(4)DOM showed a high affinity with permanganate index(COD Mn)and chlorophyll a(chl a)while the relationship was variable with phosphorus.This study helps us systematically understand the DOM characteristics,microbial activities,and pollutant transformation in the Changjiang River basin and provides reference to the ecological restoration of aquatic environments.
基金funded by the National Natural Science Foundation of China(Nos.51479187,51209192)the China Postdoctoral Science Foundation(Nos.2014T70505+1 种基金2013M 540438)the PAPD,and the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF13011)
文摘Metal binding of organic ligands can definitely affect its environmental behavior in waters,while information on the binding heterogeneity with different organic ligands is still lacked till now.In this study,the binding of zinc with organic matters associated with cyanobacterial blooms,including dissolved organic matters(DOM) and attached organic matters(AOM),were studied by using fluorescence quenching titration combined with two-dimensional correlation spectroscopy(2D-COS).Metal-induced fluorescent quenching was obviously observed both for DOM and AOM,indicating the formation of metal-ligand complexes.Compared with the one-dimensional spectra,2D-COS revealed the sequences of metal-ligand interaction with the following orders:276 nm 〉 232 ran for DOM and232 nm 〉 276 nm for AOM.Furthermore,the modified Stern-Volmer model showed that the binding constant(logKM) of 276 nm in DOM was higher than that of 232 nm(4.93 vs.4.51),while AOM was characterized with a high binding affinity for 232 nm(log KM:4.83).The ranks of log KM values were consistent with the sequential orders derived from 2D-COS results both for the two samples.Fluorescence quenching titration combined with 2D-COS was an effective method to characterize the metal-ligand interaction.
基金Supported by Hubei Provincial Comprehensive Investigation of Land Resources Using Remote Sensing Technology Program (No. 0799210014).
文摘By analyzing the enhanced thematic mapper (ETM) images of September 1999, and quality observation data for many consecutive years in several parts of the Donghu Lake in Wuhan, China, the authors discovered a good linear relation between grey scale (GS) abstracted from ETM b5, b7 images and eutrophication level of the lakes, and extended the study to eight other major lakes in the area of Wu- han by using lake eutrophication models. Based on the in situ monitoring data, we also evaluated the eu- trophication level of the lakes with modified trophic index method brought by M. Aizaki et al. The results of the two methods showed that the most of the lakes were eutrophicated, and even hyper-eutrophicated in some areas. Six of the 8 lakes had very similar trophic state index (TSI) values. Although two of them differed in TSI value, but within an order, while it was different largely from the one by traditional method. The difference of the results between the two methods might have been due to three causative reasons. First, remote sensing technology reflects the overall status of a certain area corresponding to the ETM images in a certain period, but the modified TSI reflects the annual average values of the monitoring spots. Second, the time the ETM images taken is later than that of in situ data. Third, ETM images are affected by clouds, water depth, and suspended matter. In short, remote sensing result agreed greatly with the in situ monitoring data, indicating that remote sensing technology is feasible and effective for moni- toring and evaluating the lake eutrophication in the Wuhan area and it also can be used to evaluate large-scope lake eutrophication.
基金Supported by the National Natural Science Foundation of China(No.41601194)the Applied Basic Research Fund of Shanxi Province,China(No.201701D221214)。
文摘Lake eutrophication is recognised as a serious global challenge,and many regional legislative programmes are being made to attempt to relieve nutrient pollution and restore deteriorated lake ecological state.However,it is of primary importance to understand the degradation processes and reference conditions.The palaeolimnological approach allows us to use ecological evidences preserved in lake sediments to track the changes of lake trophic status under human impact.Diatoms,a proxy for ecological and limnological change,and pigments,a proxy for algal production and composition,were analysed on a short sediment sequence from Lake Dojran(Republic of North Macedonia and Greece),and their preservation qualities were evaluated before environmental interpretation.Good diatom preservation is inferred mainly from the consistent co-occurrence of robust,highly-silicified taxa and small taxa throughout the sequence.Pigment evaluation of the comparison between wet sediment samples in dark and cold storage and their corresponding dry sediment samples lyophilized immediately after the recovery reveals that sediment restoration conditions are critical for the accuracy of analysis.We show that the increased chlorophyll and xanthophyll pigment concentrations,particularly the siliceous-algae pigment fucoxanthin and diatoxanthin,together with the distinct increase in diatom concentration,indicate accelerated lake eutrophication and a major ecological shift linked to intensified water abstraction practice and agricultural expansion in the late 18th to early 19th century.Evidence of diatom assemblage composition is muted probably by the dominance of widely-tolerant small fragilaroid species in diatom composition and the better competitive ability of cyanobacteria and chlorophytes than diatoms for low light under eutrophic and turbid conditions.This study improves our understanding of recent human-induced environmental change and current ecological restoration target in this lake.
基金supported by the China Geological Survey(No.1212010310305)the General Program of Natural Science Foundation of China(Nos.41271467,40771186)
文摘Lakes are an important component of terrestrial carbon cycling. As the trend of eutrophication in many lakes continues, the mechanisms of organic carbon(OC) burial remain unclear. This paper aims to understand the distribution of OC and the effect of trophic level changes on OC burial in Chaohu Lake, a shallow eutrophic lake located in the lower reaches of the Yangtze River, SE China. Two hundred and one surface sediment samples(0–20 cm) and 53 subsurface samples(150–200 cm) from the lake were collected.The OC accumulation rates(OCARs) are relatively low, with an average of 10.01 g/m2/year in the surface sediments. The spatial distribution of the OCARs is similar to that of allochthonous OC. The difference in total phosphate(TP) content between the surface and subsurface sediments(ΔTP) is significantly correlated with the autochthonous OC,suggesting that TP loading is a critical limiting nutrient for the lake's primary productivity.It is concluded that allochthonous OC is the dominant source of total OC in surface sediments compared to autochthonous OC. The primary productivity of Lake Chaohu increased due to increasing nutrient loading. However, the autochthonous OC contributed11% of the total OC in the surface sediments. This could be ascribed to strong mineralization in the water column or surface sediments.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072261 and 11872305)。
文摘The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable transition paths to characterize the regime shifts.The most probable transition paths are obtained by minimizing the Freidlin-Wentzell(FW)action functional and Onsager-Machlup(OM)action functional,respectively.The most probable path shows the movement trend of the lake eutrophication system under noise excitation,and describes the global transition behavior of the system.Under the excitation of Gaussian noise,the results show that the stability of the eutrophic state and the oligotrophic state has different results from two perspectives of potential well and the most probable transition paths.Under the excitation of Gaussian white noise and periodic force,we find that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX1-SW-12-I)Pre-research Project of Major Basic Program of Ministry of Science and Technology (No. 2004CCA02900)
文摘To study the influence of human activity on natural lake, chironomid fauna change in the 700-560cm lake sediment in Quidenham Mere of England associated with chironomid inferred TP presented that the lake experienced a whole eutrophication process due to human hemp-retting in Post-Medieval based on the history record and pollen analysis, which was confirmed by mollusc and ostracod analysis. However, the response of chironomid and mollusc to retting was the strongest with ostracod a little behind. It proved that cultural eutrophication existed in history and could be recovered by itself despite of some long-term unachievahle destroy. And it was most important for external nutrient to be cut off during lake restoration even in ancient times.
基金funded by the National Key Research and Development Program of China(2021YFC3201203)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0009)+2 种基金the National Natural Science Foundation of China(51869014)the Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2020006)the Special Funds for Innovation and Entrepreneurship of Postgraduates in Inner Mongolia University(11200-121024).
文摘Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.
基金Supported by the National Natural Science Foundation of China(No.42077294)the Special basic research service for the Central Level Public Welfare Research Institute(No.GYZX210517)+1 种基金the Major Science and Technology Program for Water Pollution Control and Treatment(Nos.2017ZX07203-003,2017ZX07301006)the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province(No.gxyqZD2020047)。
文摘Several studies have suggested the pivotal roles of eutrophic lakes in carbon(C)cycling at regional and global scales.However,how the co-metabolism effect on lake sediment organic carbon(OC)mineralization changes in response to integrated inputs of labile OC and nutrients is poorly understood.This knowledge gap hinders our ability to predict the carbon sequestration potential in eutrophic lakes.Therefore,a 45-day microcosm experiment was conducted to examine the dominant mechanisms that underpin the co-metabolism response to the inputs of labile C and nutrients in lacustrine sediments.Results indicate that the labile C addition caused a rapid increase in the positive co-metabolism effect during the initial stage of incubation,and the co-metabolism effect was positively correlated with the C input level.The positive co-metabolism effect was consistently higher under high C input,which was 152%higher than that under low C input.The higherβ-glucosidase activity after nutrient addition,which,in turn,promoted the OC mineralization in sediments.In addition different impacts of nutrients on the co-metabolism effect under different C inputs were observed.Compared with the low nutrient treatments,the largest co-metabolism effect under high C with high nutrient treatment was observed by the end of the incubation.In the high C treatment,the intensity of the co-metabolism effect(CE)under high nitrogen treatment was 1.88 times higher than that under low nitrogen condition.However,in the low C treatment,the amount of nitrogen had limited impact on co-metabolism effect.Our study thus proved that the microorganisms obviously regulate sediment OC turnover via stoichiometric flexibility to maintain a balance between resources and microbial requirements,which is meaningful for evaluating the OC budget and lake eutrophication management in lacustrine sediments.
基金Supported by the National Natural Science Foundation of China(No.31600325)。
文摘Coexisting floating-leaved and submerged plants experience similar environmental changes but may evolve different patterns of genetic variation.To compare local-scale genetic variation,we collected samples of floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum coexisting in a disturbed urban lake in China.At the subpopulation level,using microsatellites,M.spicatum had higher clonal diversity than N.peltata.M.spicatum had 28.4%multilocus genotypes(MLGs)shared between subpopulations,but N.peltata had only one MLG shared between two adjacent subpopulations.N.peltata displayed more genetic variation between subpopulations than within subpopulations,but the reverse was true for M.spicatum.Principal components and Bayesian cluster analyses showed that individuals from each subpopulation of N.peltata tended to have relatively close genetic relationships.For M.spicatum,individuals from each subpopulation were genetically scattered with those from other subpopulations.Our results imply that in unpredictable adverse environments M.spicatum may be less subjected to local-deme extinction than N.peltata because of genetically diverse clones at the subpopulation level.This characteristic means that following adverse events,M.spicatum may rapidly restore subpopulation distributions via recolonization and intense gene flow among subpopulations.
基金Under the auspices of the National Natural Science Foundation of China(No.41771120,41771550)the National Basic Research Program of China(No.2012CB956100)。
文摘Increasing cases of lake eutrophication globally have raised concerns among stakeholders,and particularly in China.Evaluating the causes of eutrophication in waterways is essential for effective pollution prevention and control.Xiao Xingkai Lake is part of and connected to Xingkai(Khanka)Lake,a boundary lake between China and Russia.In this study,we investigated the spatio-temporal variabilities in water quality(i.e.,dissolved oxygen(DO),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(CODMn)and ammonium-nitrogen(NH4+-N))in Xiao Xingkai Lake,from 2012 to 2014,after which a Trophic Level Index was used to evaluate trophic status,in addition to the factors influencing water quality variation in the lake.The DO,TN,TP,CODMn and NH4+-N concentrations were 0.44-15.57,0.16-5.11,0.01-0.45,0.16-48.31,and 0.19-0.78 mg/L,respectively.Compared to the Environmental Quality Standards for surface water(GB 3838-2002)in China,the lake transitioned to an oligotrophic status in 2013 and 2014 from a mesotrophic status in 2012,TN and TP concentrations were the key factors influencing water quality of Xiao Xingkai Lake.Non-para-metric test results showed that sampling time and sites had significant effects on water quality.Water quality was worse in summer and in tourism and aquaculture areas,followed by agricultural drainage areas.Furthermore,lake water trophic status fluctuated between medium eutrophic and light eutrophic status from September 2012 to September 2014,and was negatively correlated with water level.Water quality in tourism and aquaculture sites were medium eutrophic,while in agricultural areas were light eutrophic.According to the results,high water-level fluctuations and anthropogenic activities were the key factor driving variability in physicochemical parameters associated with water quality in Xiao Xingkai Lake.
基金Supported by the Recruitment Program of Beifang Univesity of Nationality(Grant No.44/4400302502)~~
文摘[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems and soil microbes involved in anthropogenic nutrient cycling are very important. DNA-based molecular methods offer new tools for characterization of these mixed communities of mi- croorganisms. However, it is very difficult to remove humic substances, heavy met- als that co-existed with genome DNA representing the microbial community directly from these complex systems and can interfere with subsequent genetic analysis. The potassium dichromate solution was firstly used to remove humic substances. [Results] The steps of removing humic substances and DNA extraction were per- formed simultaneously that improved the speed of extraction to approximately 1 hour and the nucleic acids that were obtained with this method did not need to be washed with 70% ethanol and dissolved directly in sterile water for total bacterial 16S rDNA, nosZ gene of denitrifying bacteria, pmoA of methanotrophs, nifH of nitro- gen-fixing bacteria, amoA of ammonia-oxidizing bacteria and ammonia-oxidizing ar- chaea molecular ecology analyses. [Conclusion] This method could provide a plat- form for preparing a fast sediments DNA extraction.
基金supported by the Major State Basic Research Development Program of China(No.2011CB013101)the National Natural Science Foundation of China(No.10872003,10932001,11172001)+2 种基金the National Excellent Doctoral Dissertation of China(No.2007B2)the National Basic Research Program (973) of China(No.2008CB418203)the National Science and Technology Specific Project of China(No.20080ZX07422)
文摘Sediments are ultimate sinks of nutrients in lakes that record the pollution history evolutionary processes, and anthropogenic activities of a lake. However, sediments are considered as inner sources of environmental factor changes such as the variation in hydrodynamic conditions because of the nutrients they release. How does this process happen? This study investigates a typical nutrient phosphorus (P) exchange among sediment, suspended particle matter (SPM), and water. Compared with numerical and experimental studies, this study confirms that the critical velocity that occurs at a lower flow rate state exists in the range of 7 to 15 crn/sec. Critical velocity below the critical flow rate promotes the migration of particulate phosphorus (PP) to the SPM. On the other hand, critical velocity above the critical flow rate promotes the release of PP in water.