The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable trans...The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable transition paths to characterize the regime shifts.The most probable transition paths are obtained by minimizing the Freidlin-Wentzell(FW)action functional and Onsager-Machlup(OM)action functional,respectively.The most probable path shows the movement trend of the lake eutrophication system under noise excitation,and describes the global transition behavior of the system.Under the excitation of Gaussian noise,the results show that the stability of the eutrophic state and the oligotrophic state has different results from two perspectives of potential well and the most probable transition paths.Under the excitation of Gaussian white noise and periodic force,we find that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.展开更多
Global warming and algal blooms have been two of the most pressing problems faced by the world today.In recent decades,numerous studies indicated that global warming promoted the expansion of algal blooms.However,rese...Global warming and algal blooms have been two of the most pressing problems faced by the world today.In recent decades,numerous studies indicated that global warming promoted the expansion of algal blooms.However,research on how algal blooms respond to global warming is scant.Global warming coupled with eutrophication promoted the rapid growth of phytoplankton,which resulted in an expansion of algal blooms.Algal blooms are affected by the combined effects of global warming,including increases in temperatures,CO_(2)concentration,and nutrient input to aquatic systems by extreme weather events.Since the growth of phytoplankton requires CO_(2),they appear to act as a carbon sink.Unfortunately,algal blooms will release CH4,CO_(2),and inorganic nitrogen when they die and decompose.As substrate nitrogen increases from decompose algal biomass,more N2O will be released by nitrification and denitrification.In comparison to CO_(2),CH4has 28-fold and N2O has 265-fold greenhouse effect.Moreover,algal blooms in the polar regions may contribute to melting glaciers and sea ice(will release greenhouse gas,which contribute to global warming)by reducing surface albedo,which consequently would accelerate global warming.Thus,algal blooms and global warming could form feedback loops which prevent human survival and development.Future researches shall examine the mechanism,trend,strength,and control strategies involved in this mutual feedback.Additionally,it will promote global projects of environmental protection combining governance greenhouse gas emissions and algal blooms,to form a geoengineering for regulating the cycles of carbon,nitrogen,and phosphorus.展开更多
Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small s...Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.展开更多
Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(...Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(15)N-PN) and dissolved nitrate(δ^(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)) in Zhanjiang Bay,a typical mariculture bay with a high level of eutrophication in South China,to investigate the changes in nitrogen sources and their cycling between the rainy and dry seasons.During the rainy season,the study found no significant relation between δ^(15)NPN and δ^(15)N-NO_(3)^(-)due to the impact of heavy rainfall and terrestrial erosion.In the upper bay,a slight nitrate loss and slightly higher δ_(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)values were observed,attributed to intense physical sedimentwater interactions.Despite some fluctuations,nitrate concentrations in the lower bay mainly aligned with the theoretical mixing line during the rainy season,suggesting that nitrate was primarily influenced by terrestrial erosion and that nitrate isotopes resembled the source.Consequently,the isotopic values of nitrate can be used for source apportionment in the rainy season.The results indicated that soil nitrogen(36%) and manure and sewage(33%) were the predominant nitrogen sources contributing to nitrogen loads during this period.In contrast,the dry season saw a deficient ammonium concentration(<0.2 μmol/L) in the bay,due to nearly complete consumption by phytoplankton during the red tide period.Additionally,the significant loss of nitrate and simultaneous increase in the stable isotopes of dissolved and particulate nitrogen suggest a strong coupling of assimilation and mineralization during the dry season.More active biogeochemical processes during the dry season may be related to decreased runoff and increased water retention time.Overall,our study illustrated the major seasonal nitrogen sources and their dynamics in Zhanjiang B ay,providing valuable insights for formulating effective policies to mitigate eutrophication in mariculture bays.展开更多
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei...Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture.展开更多
The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
Copepoda are one of the most significant animal groups present in aquatic ecosystems.Ecologists,evolutionary biologists,and biotechnologists continue to test new methods to study the application of Copepoda as model o...Copepoda are one of the most significant animal groups present in aquatic ecosystems.Ecologists,evolutionary biologists,and biotechnologists continue to test new methods to study the application of Copepoda as model organisms in various fields of pure and applied science,from evolution and ecology to aquaculture as live feed,as biological control of mosquito larvae,as biological indicators of water and sediment quality,in environmental monitoring and as a source of protein in the food industry.This paper reviews the current progress and trends within copepod research from a number of different perspectives.We emphasize the importance of Copepoda and the necessity of strengthening research on various topics related to copepod biology,some of which are of great significance to local sustainable development.展开更多
Taxonomic sufficiency(TS)refers to identifying taxa to a taxonomic level sufficient to detect community changes in stressed environments and may provide a cost-effective approach in routine monitoring programs.However...Taxonomic sufficiency(TS)refers to identifying taxa to a taxonomic level sufficient to detect community changes in stressed environments and may provide a cost-effective approach in routine monitoring programs.However,there is still limited information regarding the seasonal impact of applying TS and its implications for the ecological quality evaluation in the estuarine ecosystem.This study investigated the relationship between the multivariate-AZTI’s Marine Biotic Index(M-AMBI)and environmental variables in three seasons(i.e.,spring,summer,and autumn)in the Liaohe River Estuary.We tested the reliability of TS for simplifying the M-AMBI methodology.The results showed that family and genus level data could reproduce the spatial-temporal patterns of community structure at the species level.The M-AMBI values showed a consistent spatial distribution pattern in all sampling seasons,with a decreasing trend with the increasing distance from the estuary mouth.Both genus and family level data performed nearly as well as species level in detecting the seasonal variations of pollutants(i.e.,nutrients and total organic content).The family level M-AMBI was feasible to discern stress in the Liaohe River Estuary because of the high aggregation ratios at different taxonomic levels in all sampling seasons.These findings suggest that applying taxonomic sufficiency based on the M-AMBI provides an efficient approach for evaluating ecological quality in the Liaohe River Estuary.展开更多
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain uncl...Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.展开更多
Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays beca...Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays because they are associated with zoonotic diseases like salmonellosis and this has left soybean meal as the only source of dietary protein in broiler feeds. Soybean meal is in short supply in Zimbabwe and this country is relying on some soybean meal imports from South Africa and Zambia resulting in prices of poultry feed and broiler meat going upwards. Cheap and locally available alternative sources of protein to soybean meal must be found in order to reduce the cost of making poultry feed. The selected alternative source of protein must have protein which is highly digestible such that the bulk of this protein can be metabolized and utilized by broilers to synthesize meat leaving a little of it to be excreted through faeces and urine. Highly digestible protein is very important in broiler feed making because this reduces the amount of nitrogen lost through poultry excreta into the environment. Cowpea has been chosen to entirely or partially replace soybean meal in this review paper because it is locally grown, drought tolerant, cheap and its true protein digestibility (TPD) of 71% to 76% is generally comparable to 81% to 83% of soybean meal. Nowadays, people are concerned about protecting the environment from being polluted by wastes from industrial and agricultural activities. Poultry farming pollutes the environment with ammonia emitted from poultry excreta. The grain legumes used in formulating broiler feed such as soybean meal contain anti-nutritional factors which reduce protein digestibility and increase nitrogen excretion through poultry faeces. The nitrogen in faeces is volatilized into ammonia, emitted into the atmosphere and cause eutrophication of surface waters. Therefore, the effect of incorporating cowpea meal in broiler diets on environmental pollution by nitrogen excretion from broiler faeces needs to be explored.展开更多
Phosphate is the main limiting factor of water eutrophication. In order to effectively control phosphorus pollution in water, straw microwave charcoal(CaCl2SBC) was prepared with straw after CaCl2activation and microw...Phosphate is the main limiting factor of water eutrophication. In order to effectively control phosphorus pollution in water, straw microwave charcoal(CaCl2SBC) was prepared with straw after CaCl2activation and microwave biomass carbonization, and the adsorption effect of phosphate by CaCl2SBC was analyzed. The results showed that the prepared straw microwave charcoal contained hydroxyl and carbon-carbon double bonds, and CaCl2SBC had a very obvious adsorption effect on phosphate in eutrophic water. The optimum conditions for the adsorption of phosphate by CaCl2SBC are as follows: initial concentration of phosphate was 50 mg/L;adsorption time was 120 min;pH was 9;adsorption temperature was 25 ℃;CaCl2SBC dosage was 300 mg/L. Under the optimum conditions, the maximum removal rate can reach 99%. The prepared straw microwave charcoal can be used for phosphorus removal from eutrophic water.展开更多
In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were u...In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were used to understand the water quality characteristics,pollution status,and main pollutants of the Siyuan Lake.On this basis,the comprehensive nutritional status index method was used to evaluate the eutrophication status of the Siyuan Lake.The results showed that the overall water quality of the artificial lake was good,showing as still clean,with TN and TP being the main pollution factors of the artificial lake.The main nutritional indicators were TN,TP,and transparency,with a comprehensive nutritional level of middle eutropher.Based on the environmental characteristics of the artificial lake area on the campus of Tibet University,reasonable treatment measures have been proposed.It hoped to prevent and improve the water environment through these measures,and provide reference for the protection and restoration of campus landscape water body.展开更多
Eutrophication is the term used to describe the presence of natural and artificial nutrients like phosphorus and nitrogen in aquatic ecosystems.The water quality in various bodies of water such as ponds,lakes,rivers,e...Eutrophication is the term used to describe the presence of natural and artificial nutrients like phosphorus and nitrogen in aquatic ecosystems.The water quality in various bodies of water such as ponds,lakes,rivers,etc.is deteriorating as a result of an abundance of plant nutrients in these water sources.Over-enrichment of aquatic ecosystems with nutrients is a major hazard to the well-being of aquatic ecosystems worldwide.In addition,the circulations have lowered the requirements for home and agricultural consumption of water.The main origins of these plant nutrients within aquatic ecosystems stem from the discharges of industries engaged in activities like livestock farming,agriculture,fertilizer production,manufacturing of textiles,and clothing production.Therefore,a variety of methods and approaches have already been developed as safety measures to avoid the negative consequences of water tainted with those undesired minerals.Eutrophication presents many obstacles,but with the right public awareness campaign and global scientific efforts,its negative impacts may be lessened.This research seeks to pinpoint the primary origins of plant nutrients within the aquatic ecosystem and explore potential triggers for eutrophication.Additionally,it proposes innovative regulatory methods and offers suggestions for sustainable wastewater management practices.展开更多
As part of the determination of the possible impact of human activities on surface waters, case of Lake Sonfonia, six sampling sites were selected according to their solicitation by the population and their exposure t...As part of the determination of the possible impact of human activities on surface waters, case of Lake Sonfonia, six sampling sites were selected according to their solicitation by the population and their exposure to probable sources of pollution. The objective of this work is to monitor the physico-chemical quality of the waters of Lake Sonfonia during the low water level (March) and during the flood period (August) of the year 2021. Two sampling campaigns of water were carried out in dry weather and two others in cold weather. Parameters such as temperature, pH, EC (Electrical Conductivity), dissolved oxygen, TDS (Total Dissolved Solids) were measured in situ. Suspended matter, phosphate, nitrate, nitrite, sulphates, total iron, COD (Chemical Oxygen Demand) were measured in the laboratory by the colorimetric method. Stata 15 software was applied for the statistical analysis of the data and the correlation test between the parameters gave highly significant correlations. It has been noted that the situation is not very good and that this pollution comes mainly from human activities.展开更多
[Objective] The research aimed to know the ecological environment pollution characteristics of Hongfeng Lake water area and the evolution rule,which provided the theory basis for improving the water quality condition....[Objective] The research aimed to know the ecological environment pollution characteristics of Hongfeng Lake water area and the evolution rule,which provided the theory basis for improving the water quality condition.[Method] Based on the investigation and research of indoor and outdoor,the water quality,aquatic ecosystem,pollution characteristic of sediment and occurrence law of algae blooms in Hongfeng Lake were comprehensively analyzed by combining with the relevant literatures.[Result] Hongfeng Lake was in moderate-heavy eutrophication situation,and the water quality was V-bad V class.The sediment accumulated a lot of nutrient salt,which was the important pollution source of eutrophication in Hongfeng Lake Reservoir.The aquatic ecosystem degraded,and it was easy to form the algae blooms.[Conclusion] The pollution treatment of Hongfeng Lake was extremely urgent.展开更多
[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of float...[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.展开更多
A cruise of survey in the 2008 Olympics boat-sailing field and adjacent area was carried out on August 28^th, 2003. Preliminarily analysis on the eutrophication status was made on the basis of the content of dissolved...A cruise of survey in the 2008 Olympics boat-sailing field and adjacent area was carried out on August 28^th, 2003. Preliminarily analysis on the eutrophication status was made on the basis of the content of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphate (PO4-P), dissolved oxygen(DO) and chemical oxygen demand (COD) as well. The results indicated that in most of the survey area, water quality was in accordance with the 1^st class National Seawater Standard except the average concentration of petroleum hydrocarbon which was beyond the 2^nd class National Seawater Standard. The concentrations of PO4-P as well as DIN were mainly influenced by the runoff or drainage from lands, with a comparatively higher concentration in the coastal areas from the Fushan Bay to the Shilaoren bathing beach. The distribution of eutrophication index (El) showed that part of the survey area was in a state of slight eutrophication The eutrophication was mostly influenced by the land runoff or drainage and related factors. The sea water quality of the Olympic boat-sailing field was fine and just slightly polluted on the whole.展开更多
[Objective] This study aimed to find out effective measures to solve land- scape water eutrophication. [Method] Based on an overview of the urban landscape water characteristics and pollution control situation, taking...[Objective] This study aimed to find out effective measures to solve land- scape water eutrophication. [Method] Based on an overview of the urban landscape water characteristics and pollution control situation, taking an example of the artificial lakes in a campus in Xi'an, we comparatively analyzed the present pollution situation of Xiuyuan Lake and Mingyuan Lake, and provided controlling measures against eutrophication pollution, as well as restoration measures. [Result] All the indicators (TN, TP, Chl-a, NH3-N, CODMn) of the landscape water quality in both Xiuyuan Lake and Mingyuan Lake went severely beyond the Grade IV standards, presenting a state of heavy eutrophication. Nitrogen, phosphorus and other nutrient salts carried by atmospheric precipitation and its runoff, as well as domestic garbage generated by human activities were primary exogenous pollutants of the artificial lakes. And the release of sediment pollutants was endogenous substances causing deterioration of water quality. [Conclusion] This paper presents some measures to control the pollution of artificial lakes, and provides scientific references for the construction, operation and management of artificial lakes, as well as maintenance of aquatic environment.展开更多
In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluat...In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model.展开更多
[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems...[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems and soil microbes involved in anthropogenic nutrient cycling are very important. DNA-based molecular methods offer new tools for characterization of these mixed communities of mi- croorganisms. However, it is very difficult to remove humic substances, heavy met- als that co-existed with genome DNA representing the microbial community directly from these complex systems and can interfere with subsequent genetic analysis. The potassium dichromate solution was firstly used to remove humic substances. [Results] The steps of removing humic substances and DNA extraction were per- formed simultaneously that improved the speed of extraction to approximately 1 hour and the nucleic acids that were obtained with this method did not need to be washed with 70% ethanol and dissolved directly in sterile water for total bacterial 16S rDNA, nosZ gene of denitrifying bacteria, pmoA of methanotrophs, nifH of nitro- gen-fixing bacteria, amoA of ammonia-oxidizing bacteria and ammonia-oxidizing ar- chaea molecular ecology analyses. [Conclusion] This method could provide a plat- form for preparing a fast sediments DNA extraction.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12072261 and 11872305)。
文摘The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored.Unlike the existing work in detecting early warning signals,this paper presents the most probable transition paths to characterize the regime shifts.The most probable transition paths are obtained by minimizing the Freidlin-Wentzell(FW)action functional and Onsager-Machlup(OM)action functional,respectively.The most probable path shows the movement trend of the lake eutrophication system under noise excitation,and describes the global transition behavior of the system.Under the excitation of Gaussian noise,the results show that the stability of the eutrophic state and the oligotrophic state has different results from two perspectives of potential well and the most probable transition paths.Under the excitation of Gaussian white noise and periodic force,we find that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.
基金Supported by the Chongqing Water Conservancy Bureau Project(No.5000002021BF40001)the National Natural Science Foundation of China(No.41601537)+1 种基金the Opening Fund of the State Key Laboratory of Environmental Geochemistry(No.SKLEG2021202)the Strategic Pilot Science and Technology(Class A,No.XDA23040303)。
文摘Global warming and algal blooms have been two of the most pressing problems faced by the world today.In recent decades,numerous studies indicated that global warming promoted the expansion of algal blooms.However,research on how algal blooms respond to global warming is scant.Global warming coupled with eutrophication promoted the rapid growth of phytoplankton,which resulted in an expansion of algal blooms.Algal blooms are affected by the combined effects of global warming,including increases in temperatures,CO_(2)concentration,and nutrient input to aquatic systems by extreme weather events.Since the growth of phytoplankton requires CO_(2),they appear to act as a carbon sink.Unfortunately,algal blooms will release CH4,CO_(2),and inorganic nitrogen when they die and decompose.As substrate nitrogen increases from decompose algal biomass,more N2O will be released by nitrification and denitrification.In comparison to CO_(2),CH4has 28-fold and N2O has 265-fold greenhouse effect.Moreover,algal blooms in the polar regions may contribute to melting glaciers and sea ice(will release greenhouse gas,which contribute to global warming)by reducing surface albedo,which consequently would accelerate global warming.Thus,algal blooms and global warming could form feedback loops which prevent human survival and development.Future researches shall examine the mechanism,trend,strength,and control strategies involved in this mutual feedback.Additionally,it will promote global projects of environmental protection combining governance greenhouse gas emissions and algal blooms,to form a geoengineering for regulating the cycles of carbon,nitrogen,and phosphorus.
基金supported by the Joint Fund between NSFC and Shandong Province(No.U1906210)the China National Key Research and Development Program(No.2016YFC1402101).
文摘Since 2007,the large-scale green tide caused by Ulva prolifera(U.prolifera)have occurred as a recurrent phenomenon in the southern Yellow Sea of China.Field surveys and satellite remote sensing showed that the small scattered patches of green tide algae were first observed along the Porphyra agriculture area of the Subei Shoal in late April.In this study,we attempted to identify the role of eutrophication in the origin of the green tide in the Subei Shoal and its adjacent area.Subei Shoal and its adjacent area are characterized by rich nutrients,especially NO_(3)^(-)-N,NH_(4)^(+)-N,PO_(4)^(3-)-P,and other bioavailable components(such as urea-N and amino acids).In the spring of 2017,the average concentrations of NO_(3)^(-)-N were 19.01±11.01μmolL^(-1),accounting for 86.68%of the dis-solved inorganic nitrogen(DIN).In addition,the average concentration of NH4^(+)-N was 2.51±1.60μmolL^(-1).PO_(4)^(3-)-P had an average concentration of 0.14±0.13μmolL-1.The average concentrations of urea-N and total hydrolyzed amino acids(THAA)were 1.73±1.36μmolL^(-1)and 1.33±0.80μmolL^(-1),respectively.Rich nutritive substances play a key role in the rapid production of U.prolifera and make the Jiangsu coastal water an incubator for green tide.
基金The National Natural Science Foundation of China under contract Nos 42276047, 92158201 and U1901213the Entrepreneurship Project of Shantou under contract No.2021112176541391the Scientific Research Start-Up Foundation of Shantou University under contract No.NTF20006。
文摘Eutrophication in coastal waters has been increasing remarkably,severely impacting the water quality in mariculture bays.In this study,we conducted multiple isotopic measurements on suspended particulate nitrogen(δ^(15)N-PN) and dissolved nitrate(δ^(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)) in Zhanjiang Bay,a typical mariculture bay with a high level of eutrophication in South China,to investigate the changes in nitrogen sources and their cycling between the rainy and dry seasons.During the rainy season,the study found no significant relation between δ^(15)NPN and δ^(15)N-NO_(3)^(-)due to the impact of heavy rainfall and terrestrial erosion.In the upper bay,a slight nitrate loss and slightly higher δ_(15)N-NO_(3)^(-)and δ^(18)O-NO_(3)^(-)values were observed,attributed to intense physical sedimentwater interactions.Despite some fluctuations,nitrate concentrations in the lower bay mainly aligned with the theoretical mixing line during the rainy season,suggesting that nitrate was primarily influenced by terrestrial erosion and that nitrate isotopes resembled the source.Consequently,the isotopic values of nitrate can be used for source apportionment in the rainy season.The results indicated that soil nitrogen(36%) and manure and sewage(33%) were the predominant nitrogen sources contributing to nitrogen loads during this period.In contrast,the dry season saw a deficient ammonium concentration(<0.2 μmol/L) in the bay,due to nearly complete consumption by phytoplankton during the red tide period.Additionally,the significant loss of nitrate and simultaneous increase in the stable isotopes of dissolved and particulate nitrogen suggest a strong coupling of assimilation and mineralization during the dry season.More active biogeochemical processes during the dry season may be related to decreased runoff and increased water retention time.Overall,our study illustrated the major seasonal nitrogen sources and their dynamics in Zhanjiang B ay,providing valuable insights for formulating effective policies to mitigate eutrophication in mariculture bays.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group research project under Grant Number RGP2/304/44.
文摘Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture.
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
基金Supported by the Open Project of the Key Laboratory of Fish Conservation and Utilization in the Upper Reaches of the Yangtze River of Sichuan Province(No.NJSYKF-002)the National Natural Science Foundation of China(Nos.41961144013,41706191)+2 种基金the Scientific Research Fund of the Second Institute of Oceanography,MNR(No.JT1803)the Natural Science Foundation of Zhejiang Province(No.LY20D060004)the Scientific Research Project of Education Department of Sichuan Province(No.18ZA0283)。
文摘Copepoda are one of the most significant animal groups present in aquatic ecosystems.Ecologists,evolutionary biologists,and biotechnologists continue to test new methods to study the application of Copepoda as model organisms in various fields of pure and applied science,from evolution and ecology to aquaculture as live feed,as biological control of mosquito larvae,as biological indicators of water and sediment quality,in environmental monitoring and as a source of protein in the food industry.This paper reviews the current progress and trends within copepod research from a number of different perspectives.We emphasize the importance of Copepoda and the necessity of strengthening research on various topics related to copepod biology,some of which are of great significance to local sustainable development.
基金The National Marine Public Welfare Research Project of China under contract No.201305030the Open Fund from Observation and Research Station of Bohai Strait Eco-Corridor under contract No.BH202201.
文摘Taxonomic sufficiency(TS)refers to identifying taxa to a taxonomic level sufficient to detect community changes in stressed environments and may provide a cost-effective approach in routine monitoring programs.However,there is still limited information regarding the seasonal impact of applying TS and its implications for the ecological quality evaluation in the estuarine ecosystem.This study investigated the relationship between the multivariate-AZTI’s Marine Biotic Index(M-AMBI)and environmental variables in three seasons(i.e.,spring,summer,and autumn)in the Liaohe River Estuary.We tested the reliability of TS for simplifying the M-AMBI methodology.The results showed that family and genus level data could reproduce the spatial-temporal patterns of community structure at the species level.The M-AMBI values showed a consistent spatial distribution pattern in all sampling seasons,with a decreasing trend with the increasing distance from the estuary mouth.Both genus and family level data performed nearly as well as species level in detecting the seasonal variations of pollutants(i.e.,nutrients and total organic content).The family level M-AMBI was feasible to discern stress in the Liaohe River Estuary because of the high aggregation ratios at different taxonomic levels in all sampling seasons.These findings suggest that applying taxonomic sufficiency based on the M-AMBI provides an efficient approach for evaluating ecological quality in the Liaohe River Estuary.
基金funded by the National Key Research and Development Program of China(2021YFC3201203)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0009)+2 种基金the National Natural Science Foundation of China(51869014)the Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2020006)the Special Funds for Innovation and Entrepreneurship of Postgraduates in Inner Mongolia University(11200-121024).
文摘Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.
文摘Poultry feeds are formulated using soybean meal and animal by-products as sources of protein. Animal proteins like fish meal, blood meal, meat and bone meal are being shunned in formulating poultry feeds nowadays because they are associated with zoonotic diseases like salmonellosis and this has left soybean meal as the only source of dietary protein in broiler feeds. Soybean meal is in short supply in Zimbabwe and this country is relying on some soybean meal imports from South Africa and Zambia resulting in prices of poultry feed and broiler meat going upwards. Cheap and locally available alternative sources of protein to soybean meal must be found in order to reduce the cost of making poultry feed. The selected alternative source of protein must have protein which is highly digestible such that the bulk of this protein can be metabolized and utilized by broilers to synthesize meat leaving a little of it to be excreted through faeces and urine. Highly digestible protein is very important in broiler feed making because this reduces the amount of nitrogen lost through poultry excreta into the environment. Cowpea has been chosen to entirely or partially replace soybean meal in this review paper because it is locally grown, drought tolerant, cheap and its true protein digestibility (TPD) of 71% to 76% is generally comparable to 81% to 83% of soybean meal. Nowadays, people are concerned about protecting the environment from being polluted by wastes from industrial and agricultural activities. Poultry farming pollutes the environment with ammonia emitted from poultry excreta. The grain legumes used in formulating broiler feed such as soybean meal contain anti-nutritional factors which reduce protein digestibility and increase nitrogen excretion through poultry faeces. The nitrogen in faeces is volatilized into ammonia, emitted into the atmosphere and cause eutrophication of surface waters. Therefore, the effect of incorporating cowpea meal in broiler diets on environmental pollution by nitrogen excretion from broiler faeces needs to be explored.
基金Supported by the High-quality Ecological Restoration of Damaged Water BodyVocational Education Personnel Training and Education and Teaching Reform Research Project of Sichuan Provincial Department of Education during2022-2024 (GZJG2022-014)Education and Teaching Research Project of Chengdu Textile College in 2022 (2022cdfzjj19)。
文摘Phosphate is the main limiting factor of water eutrophication. In order to effectively control phosphorus pollution in water, straw microwave charcoal(CaCl2SBC) was prepared with straw after CaCl2activation and microwave biomass carbonization, and the adsorption effect of phosphate by CaCl2SBC was analyzed. The results showed that the prepared straw microwave charcoal contained hydroxyl and carbon-carbon double bonds, and CaCl2SBC had a very obvious adsorption effect on phosphate in eutrophic water. The optimum conditions for the adsorption of phosphate by CaCl2SBC are as follows: initial concentration of phosphate was 50 mg/L;adsorption time was 120 min;pH was 9;adsorption temperature was 25 ℃;CaCl2SBC dosage was 300 mg/L. Under the optimum conditions, the maximum removal rate can reach 99%. The prepared straw microwave charcoal can be used for phosphorus removal from eutrophic water.
基金Supported by Innovative Projects for University Students(2022XCX020).
文摘In this paper,the artificial lake on the campus of Tibet University was taken as the research object.By detecting the water quality of the lake,the standard index method and comprehensive pollution index method were used to understand the water quality characteristics,pollution status,and main pollutants of the Siyuan Lake.On this basis,the comprehensive nutritional status index method was used to evaluate the eutrophication status of the Siyuan Lake.The results showed that the overall water quality of the artificial lake was good,showing as still clean,with TN and TP being the main pollution factors of the artificial lake.The main nutritional indicators were TN,TP,and transparency,with a comprehensive nutritional level of middle eutropher.Based on the environmental characteristics of the artificial lake area on the campus of Tibet University,reasonable treatment measures have been proposed.It hoped to prevent and improve the water environment through these measures,and provide reference for the protection and restoration of campus landscape water body.
文摘Eutrophication is the term used to describe the presence of natural and artificial nutrients like phosphorus and nitrogen in aquatic ecosystems.The water quality in various bodies of water such as ponds,lakes,rivers,etc.is deteriorating as a result of an abundance of plant nutrients in these water sources.Over-enrichment of aquatic ecosystems with nutrients is a major hazard to the well-being of aquatic ecosystems worldwide.In addition,the circulations have lowered the requirements for home and agricultural consumption of water.The main origins of these plant nutrients within aquatic ecosystems stem from the discharges of industries engaged in activities like livestock farming,agriculture,fertilizer production,manufacturing of textiles,and clothing production.Therefore,a variety of methods and approaches have already been developed as safety measures to avoid the negative consequences of water tainted with those undesired minerals.Eutrophication presents many obstacles,but with the right public awareness campaign and global scientific efforts,its negative impacts may be lessened.This research seeks to pinpoint the primary origins of plant nutrients within the aquatic ecosystem and explore potential triggers for eutrophication.Additionally,it proposes innovative regulatory methods and offers suggestions for sustainable wastewater management practices.
文摘As part of the determination of the possible impact of human activities on surface waters, case of Lake Sonfonia, six sampling sites were selected according to their solicitation by the population and their exposure to probable sources of pollution. The objective of this work is to monitor the physico-chemical quality of the waters of Lake Sonfonia during the low water level (March) and during the flood period (August) of the year 2021. Two sampling campaigns of water were carried out in dry weather and two others in cold weather. Parameters such as temperature, pH, EC (Electrical Conductivity), dissolved oxygen, TDS (Total Dissolved Solids) were measured in situ. Suspended matter, phosphate, nitrate, nitrite, sulphates, total iron, COD (Chemical Oxygen Demand) were measured in the laboratory by the colorimetric method. Stata 15 software was applied for the statistical analysis of the data and the correlation test between the parameters gave highly significant correlations. It has been noted that the situation is not very good and that this pollution comes mainly from human activities.
基金Supported by Department of Education Key Item in Guizhou Province (200910040)Guizhou Province UNRISD Research Item (SY20103176)Guizhou Province Fund Item(20082239)~~
文摘[Objective] The research aimed to know the ecological environment pollution characteristics of Hongfeng Lake water area and the evolution rule,which provided the theory basis for improving the water quality condition.[Method] Based on the investigation and research of indoor and outdoor,the water quality,aquatic ecosystem,pollution characteristic of sediment and occurrence law of algae blooms in Hongfeng Lake were comprehensively analyzed by combining with the relevant literatures.[Result] Hongfeng Lake was in moderate-heavy eutrophication situation,and the water quality was V-bad V class.The sediment accumulated a lot of nutrient salt,which was the important pollution source of eutrophication in Hongfeng Lake Reservoir.The aquatic ecosystem degraded,and it was easy to form the algae blooms.[Conclusion] The pollution treatment of Hongfeng Lake was extremely urgent.
基金Supported by Agricultural Science and Technology Achievements Transformation Fund Project of Science and Technology Ministry(2009GB23320484)National Spark Program Project(2010GA760003)~~
文摘[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.
基金The paper was supported by the National Key Technologies R&D Program(2002BA904B06)Project continuously funded by the Shandong Natural Science Foundation(L2000E01)"Green 0lympics"specialized program of Qingdao Municipal Science and Technology Commission(HAK1203).
文摘A cruise of survey in the 2008 Olympics boat-sailing field and adjacent area was carried out on August 28^th, 2003. Preliminarily analysis on the eutrophication status was made on the basis of the content of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphate (PO4-P), dissolved oxygen(DO) and chemical oxygen demand (COD) as well. The results indicated that in most of the survey area, water quality was in accordance with the 1^st class National Seawater Standard except the average concentration of petroleum hydrocarbon which was beyond the 2^nd class National Seawater Standard. The concentrations of PO4-P as well as DIN were mainly influenced by the runoff or drainage from lands, with a comparatively higher concentration in the coastal areas from the Fushan Bay to the Shilaoren bathing beach. The distribution of eutrophication index (El) showed that part of the survey area was in a state of slight eutrophication The eutrophication was mostly influenced by the land runoff or drainage and related factors. The sea water quality of the Olympic boat-sailing field was fine and just slightly polluted on the whole.
基金Supported by National Science Fund for Distinguished Young Scholars of China(41102107)Basic Research Program for Technology Innovation,Chang'an University(CHD2012JC080)~~
文摘[Objective] This study aimed to find out effective measures to solve land- scape water eutrophication. [Method] Based on an overview of the urban landscape water characteristics and pollution control situation, taking an example of the artificial lakes in a campus in Xi'an, we comparatively analyzed the present pollution situation of Xiuyuan Lake and Mingyuan Lake, and provided controlling measures against eutrophication pollution, as well as restoration measures. [Result] All the indicators (TN, TP, Chl-a, NH3-N, CODMn) of the landscape water quality in both Xiuyuan Lake and Mingyuan Lake went severely beyond the Grade IV standards, presenting a state of heavy eutrophication. Nitrogen, phosphorus and other nutrient salts carried by atmospheric precipitation and its runoff, as well as domestic garbage generated by human activities were primary exogenous pollutants of the artificial lakes. And the release of sediment pollutants was endogenous substances causing deterioration of water quality. [Conclusion] This paper presents some measures to control the pollution of artificial lakes, and provides scientific references for the construction, operation and management of artificial lakes, as well as maintenance of aquatic environment.
基金Supported by Science and Technology Basic Special Project(2009IM020100)National Natural Science Foundation of China(5077904250739002)~~
文摘In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model.
基金Supported by the Recruitment Program of Beifang Univesity of Nationality(Grant No.44/4400302502)~~
文摘[Objective] The objective of this study was to report an improved method for rapid DNA extraction from black-order sediments, without any purification step. [Methods] Sediments in eutrophic lake are complex ecosystems and soil microbes involved in anthropogenic nutrient cycling are very important. DNA-based molecular methods offer new tools for characterization of these mixed communities of mi- croorganisms. However, it is very difficult to remove humic substances, heavy met- als that co-existed with genome DNA representing the microbial community directly from these complex systems and can interfere with subsequent genetic analysis. The potassium dichromate solution was firstly used to remove humic substances. [Results] The steps of removing humic substances and DNA extraction were per- formed simultaneously that improved the speed of extraction to approximately 1 hour and the nucleic acids that were obtained with this method did not need to be washed with 70% ethanol and dissolved directly in sterile water for total bacterial 16S rDNA, nosZ gene of denitrifying bacteria, pmoA of methanotrophs, nifH of nitro- gen-fixing bacteria, amoA of ammonia-oxidizing bacteria and ammonia-oxidizing ar- chaea molecular ecology analyses. [Conclusion] This method could provide a plat- form for preparing a fast sediments DNA extraction.