Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accurac...Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.展开更多
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff...In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.展开更多
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ...Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.展开更多
The uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which...The uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which are related to the maximum predictable time, the maximum prediction error, and the maximum admissible errors of the initial values and the parameters in the model respectively. The three problems are then formulated into nonlinear optimization problems. Effective approaches to deal with these nonlinear optimization problems are provided. The Lorenz’ model is employed to demonstrate how to use these ideas in dealing with these three problems.展开更多
The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a ...The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a method to estimate imperfect numerical model error. This method can be inversely estimated through expressing the model error as a Lagrange interpolation polynomial, while the coefficients of polyno- mial are determined by past model performance. However, for practical application in the full NWP model, it is necessary to determine the following criteria: (1) the length of past data sufficient for estimation of the model errors, (2) a proper method of estimating the term "model integration with the exact solution" when solving the inverse problem, and (3) the extent to which this scheme is sensitive to the observational errors. In this study, such issues are resolved using a simple linear model, and an advection diffusion model is applied to discuss the sensitivity of the method to an artificial error source. The results indicate that the forecast errors can be largely reduced using the proposed method if the proper length of past data is chosen. To address the three problems, it is determined that (1) a few data limited by the order of the corrector can be used, (2) trapezoidal approximation can be employed to estimate the "term" in this study; however, a more accurate method should be explored for an operational NWP model, and (3) the correction is sensitive to observational error.展开更多
The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large...The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.展开更多
This paper introduces several alternative statistical approaches to modeling and prediction of electric energy generated by photovoltaic farms. The statistical models use outputs of a numerical weather prediction mode...This paper introduces several alternative statistical approaches to modeling and prediction of electric energy generated by photovoltaic farms. The statistical models use outputs of a numerical weather prediction model as their inputs. Presented statistical models allow for easy-to-compute predictions, both in temporal sense and for out-of-sample individual farms. Model performance is illustrated on a sample of real photovoltaic farms located in the Czech Republic.展开更多
Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological communit...Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.展开更多
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the an...An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.展开更多
Precipitable Water (PW) derived from Global Positioning System (GPS) measurements and numerical weather prediction (NWP) model analysis data were compared to further evaluate the effcacy of applying GPS-derived ...Precipitable Water (PW) derived from Global Positioning System (GPS) measurements and numerical weather prediction (NWP) model analysis data were compared to further evaluate the effcacy of applying GPS-derived PW to the NWP model. The spatial and temporal variations of GPS-derived PW during a rainfall event were also examined. GPS-derived PW measurements show good agreement with the behavior of water vapor at a high spatial resolution during the analysis period. Temporal anomalies of GPS-derived PW moving along with the front are successfully detected by the GPS array. Large positive anomalies of GPS-derived PW are indicated immediately before a rainfall event, and the intensity of these positive anomalies do not seem to decrease significantly as the precipitation system passes. These results indicate that the Korean GPS network may have great potential as a PW sensor over the Korean Peninsula. In contrast with GPS-derived PW, NWP-derived PW shows negative biases. These biases appear to stem mainly from the differences between modeled and actual GPS site elevations, as GPS sites were generally located at elevations lower than those employed by the NWP model. However, there still exists a discernable dry bias after a PW correction is applied to NWP-derived PW. GPS-derived PW better reflects the spatial and temporal moisture variations of precipitation systems, as compared to NWP-derived PW. These results provide entirely new information for improving the regional NWP system, since GPS-derived PW produced with data from the Korean GPS network may be incorporated into the NWP model to improve rainfall forecasts.展开更多
The correction of model forecast is an important step in evaluating weather forecast results.In recent years,post-processing models based on deep learning have become prominent.In this paper,a deep learning model name...The correction of model forecast is an important step in evaluating weather forecast results.In recent years,post-processing models based on deep learning have become prominent.In this paper,a deep learning model named EDConvLSTM based on encoder-decoder structure and ConvLSTM is developed,which appears to be able to effectively correct numerical weather forecasts.Compared with traditional post-processing methods and convolutional neural networks,ED-ConvLSTM has strong collaborative extraction ability to effectively extract the temporal and spatial features of numerical weather forecasts and fit the complex nonlinear relationship between forecast field and observation field.In this paper,the post-processing method of ED-ConvLSTM for 2 m temperature prediction is tested using The International Grand Global Ensemble dataset and ERA5-Land data from the European Centre for Medium-Range Weather Forecasts(ECMWF).Root mean square error and temperature prediction accuracy are used as evaluation indexes to compare ED-ConvLSTM with the method of model output statistics,convolutional neural network postprocessing methods,and the original prediction by the ECMWF.The results show that the correction effect of EDConvLSTM is better than that of the other two postprocessing methods in terms of the two indexes,especially in the long forecast time.展开更多
Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance o...Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.展开更多
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF...Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF (local ensemble transform Kalman filter) with FSUGSM (Florida State University Global Spectral Model) and made an experiment to evaluate the initial condition generated to numerical weather prediction to FSUGSM model. The LETKF analysis carries out independently at each grid point with the use of "local" observations. An ensemble of estimates in state space represents uncertainty. The FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model, where the variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space The assimilation cycle runs on the period 01/01/2001 to 31/01/2001 at (00, 06, 12 and 18 GMT) for each day. We examined the atmospheric fields during the period and the OMF (observation-minus-forecast) and the OMA (observation-minus-analysis) statistics to verify the analysis quality comparing with forecasts and observations. The analyses present stability and show suitable to initiate the weather predictions.展开更多
文摘Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40575036 and 40325015).Acknowledgement The authors thank Drs Zhang Pei-Qun and Bao Ming very much for their valuable comments on the present paper.
文摘In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.
基金Project supported by the Special Scientific Research Project for Public Interest(Grant No.GYHY201206009)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2012-13 and lzujbky-2013-11)the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)
文摘Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.
基金the National Key Basic Research Project Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters i
文摘The uncertainties caused by the errors of the initial states and the parameters in the numerical model are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, which are related to the maximum predictable time, the maximum prediction error, and the maximum admissible errors of the initial values and the parameters in the model respectively. The three problems are then formulated into nonlinear optimization problems. Effective approaches to deal with these nonlinear optimization problems are provided. The Lorenz’ model is employed to demonstrate how to use these ideas in dealing with these three problems.
基金funded by the Special Scientific Research Project for Public Interest (GYHY201206009)the National Key Technologies Research and Development Program (Grant No. 2012BAC22B02)+2 种基金the National Natural Science Foundation Science Fund for Creative Research Groups (Grant No.41221064)the Special Scientific Research Project for Public Interest (Grant No. GYHY201006013)the National Natural Science Foundation of China (Grant No. 41105070 )
文摘The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a method to estimate imperfect numerical model error. This method can be inversely estimated through expressing the model error as a Lagrange interpolation polynomial, while the coefficients of polyno- mial are determined by past model performance. However, for practical application in the full NWP model, it is necessary to determine the following criteria: (1) the length of past data sufficient for estimation of the model errors, (2) a proper method of estimating the term "model integration with the exact solution" when solving the inverse problem, and (3) the extent to which this scheme is sensitive to the observational errors. In this study, such issues are resolved using a simple linear model, and an advection diffusion model is applied to discuss the sensitivity of the method to an artificial error source. The results indicate that the forecast errors can be largely reduced using the proposed method if the proper length of past data is chosen. To address the three problems, it is determined that (1) a few data limited by the order of the corrector can be used, (2) trapezoidal approximation can be employed to estimate the "term" in this study; however, a more accurate method should be explored for an operational NWP model, and (3) the correction is sensitive to observational error.
基金supported by a research grant of “Development of a Polarimetric Radar Data Simulator for Local Forecasting Model (Ⅱ)” by the KMAsupport was provided by a NOAA Warn-on-Forecast grant (Grant No. NA16OAR4320115)a National Science Foundation grant (Grant No. AGS-1261776)
文摘The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.
文摘This paper introduces several alternative statistical approaches to modeling and prediction of electric energy generated by photovoltaic farms. The statistical models use outputs of a numerical weather prediction model as their inputs. Presented statistical models allow for easy-to-compute predictions, both in temporal sense and for out-of-sample individual farms. Model performance is illustrated on a sample of real photovoltaic farms located in the Czech Republic.
基金Supported by the National Key Research and Development Program of China(2017YFC1501900)Middle-and Long-term Development Strategic Research Project of the Chinese Academy of Engineering(2019-ZCQ-06)。
文摘Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.
基金National Natural Science Foundation of China(41405104)Specialized Project for Public Welfare Industries(Meteorological Sector)(GYHY201306004)+2 种基金Guangdong Science and Technology Planning Project(2012A061400012)Project of Guangdong Provincial Meteorological Bureau for Science and Technology(2013A04)Science and Technology Plan for the 12th Five-Year of Social and Economic Development(2012BAC22B00)
文摘An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.
基金funded by the Korea Meteorological Administration Research and Development Program under Grant GATER 2006-2201 supported by the Brain Korea 21 Project
文摘Precipitable Water (PW) derived from Global Positioning System (GPS) measurements and numerical weather prediction (NWP) model analysis data were compared to further evaluate the effcacy of applying GPS-derived PW to the NWP model. The spatial and temporal variations of GPS-derived PW during a rainfall event were also examined. GPS-derived PW measurements show good agreement with the behavior of water vapor at a high spatial resolution during the analysis period. Temporal anomalies of GPS-derived PW moving along with the front are successfully detected by the GPS array. Large positive anomalies of GPS-derived PW are indicated immediately before a rainfall event, and the intensity of these positive anomalies do not seem to decrease significantly as the precipitation system passes. These results indicate that the Korean GPS network may have great potential as a PW sensor over the Korean Peninsula. In contrast with GPS-derived PW, NWP-derived PW shows negative biases. These biases appear to stem mainly from the differences between modeled and actual GPS site elevations, as GPS sites were generally located at elevations lower than those employed by the NWP model. However, there still exists a discernable dry bias after a PW correction is applied to NWP-derived PW. GPS-derived PW better reflects the spatial and temporal moisture variations of precipitation systems, as compared to NWP-derived PW. These results provide entirely new information for improving the regional NWP system, since GPS-derived PW produced with data from the Korean GPS network may be incorporated into the NWP model to improve rainfall forecasts.
基金National Key Research and Development Program of China(2017YFC1502104)Beijige Foundation of NJIAS(BJG202103)。
文摘The correction of model forecast is an important step in evaluating weather forecast results.In recent years,post-processing models based on deep learning have become prominent.In this paper,a deep learning model named EDConvLSTM based on encoder-decoder structure and ConvLSTM is developed,which appears to be able to effectively correct numerical weather forecasts.Compared with traditional post-processing methods and convolutional neural networks,ED-ConvLSTM has strong collaborative extraction ability to effectively extract the temporal and spatial features of numerical weather forecasts and fit the complex nonlinear relationship between forecast field and observation field.In this paper,the post-processing method of ED-ConvLSTM for 2 m temperature prediction is tested using The International Grand Global Ensemble dataset and ERA5-Land data from the European Centre for Medium-Range Weather Forecasts(ECMWF).Root mean square error and temperature prediction accuracy are used as evaluation indexes to compare ED-ConvLSTM with the method of model output statistics,convolutional neural network postprocessing methods,and the original prediction by the ECMWF.The results show that the correction effect of EDConvLSTM is better than that of the other two postprocessing methods in terms of the two indexes,especially in the long forecast time.
基金funded by the National BasicResearch Program of China (Grant No. 2010CB951404)the National Natural Science Foundation of China (Grant No. 40971024)CMA Special Meteorology Project (Grant No.GYHY200706001)
文摘Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.
文摘Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF (local ensemble transform Kalman filter) with FSUGSM (Florida State University Global Spectral Model) and made an experiment to evaluate the initial condition generated to numerical weather prediction to FSUGSM model. The LETKF analysis carries out independently at each grid point with the use of "local" observations. An ensemble of estimates in state space represents uncertainty. The FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model, where the variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space The assimilation cycle runs on the period 01/01/2001 to 31/01/2001 at (00, 06, 12 and 18 GMT) for each day. We examined the atmospheric fields during the period and the OMF (observation-minus-forecast) and the OMA (observation-minus-analysis) statistics to verify the analysis quality comparing with forecasts and observations. The analyses present stability and show suitable to initiate the weather predictions.