A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of th...A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of the solution is proved and the conditions for the coolant flux under which the abladtion process will complete in finite time are also determined. Finally, we show the existence of critical coolant flux beyond which the ablation material begin melting.展开更多
Passive cooling holds tremendous potential in improving thermal comfort because of its zero energy consumption and cost-effectiveness.However,currently reported radiative cooling materials primarily focus on hydrophob...Passive cooling holds tremendous potential in improving thermal comfort because of its zero energy consumption and cost-effectiveness.However,currently reported radiative cooling materials primarily focus on hydrophobic polymer films,inevi-tably leading to sweat accumulation and limited cooling efficiency in hot-humid environments.Herein,an advanced Janus membrane with excellent temperature-moisture management capabilities is developed,which combines radiative cooling and evaporative heat dissipation.Modification with Calcium sulfite(CaSO3)nanoparticles not only enhances the optical properties(state-of-the-art solar reflectance of 96.6%,infrared emittance of 96.1%)but also improves the wettability of the polylactic acid fiber membrane.Especially 15%emittance improvement is achieved due to the strong infrared radiation ability of CaSO3.The membranes with opposite wettability realize the directional sweat transport(high one-way transport index of 945%).Excellent radiative cooling capability is demonstrated with sub-ambient cooling of 5.8°C in the dry state.The Janus membranes covering sweaty skin exhibit a 46%shorter drying time and a 2°C lower average evaporation temperature compared to cotton fabric,indicating highly efficient thermal and moisture management.This work provides an efficient route to achieving smart textiles that enable the human body to adapt to complex environmental conditions.展开更多
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo...A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption.展开更多
We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 = 1.5 mm, and deriv...We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 = 1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 inK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling.展开更多
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ...The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.展开更多
The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to...The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is 〈 100 ttm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is 〉 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.展开更多
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These a...This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.展开更多
We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blu...We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blue-detuned laser beam with a waist of 20 m at a wavelength of 767 nm. We probe the variation of the atomic temperature and width versus the radio frequency in the evaporative cooling. Both the behaviors are in good agreement with the calculation of the trapping potential dressed by the rf signal above the threshold temperature,while deviating from the calculation near the phase transition. To accurately obtain the atomic width, we use the plugged hole as the reference to optimize the optical imaging system by precisely minimizing the artificial structures due to the defocus effect.展开更多
The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address ...The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media.展开更多
This paper numerically investigates the performance of a novel combined cross-regenerative cross flow(C-RC)thermoelectric assisted indirect evaporative cooling(TIEC)system.This C-RC TIEC system combines the indirect e...This paper numerically investigates the performance of a novel combined cross-regenerative cross flow(C-RC)thermoelectric assisted indirect evaporative cooling(TIEC)system.This C-RC TIEC system combines the indirect evaporative cooling and thermoelectric cooling technologies.A heat and mass transfer model is developed to perform the performance analysis and optimization of this novel system.Performance comparison between the novel C-RC TIEC system and a regenerative cross flow TIEC system is conducted under various operating conditions.It is found that the novel system provides better performance with higher coefficient of performance(C O P)and higher dew point effectiveness than the regenerative cross flow TIEC system,especially under smaller working current and smaller number of thermoelectric cooling modules.The performance optimization of the novel system is also made by investigating the influences of primary air parameters,three different mass flow rate ratios,as well as the length ratio of the left wet channel to the whole wet channel.The results show that there exist optimal mass flow rate ratios and wet channel length ratio resulting in the maximum C O P.展开更多
The viability of some waste as cooling pads for evaporative cooling application in South-Western Nigeria was experimentally assessed.This is to ascertain their effectiveness as a substitute for costly imported pads in...The viability of some waste as cooling pads for evaporative cooling application in South-Western Nigeria was experimentally assessed.This is to ascertain their effectiveness as a substitute for costly imported pads in a low income environment.Also presented was the feasibility of utilizing standalone evaporative coolers for storage and selling of fruits in South-Western Nigeria.Natural ambient air was forced through the various pads at three different fan speeds and constant cooling pad thickness of 30 mm.Performance characteristics were considered based on daily analysis using temperature and humidity data measured from morning to evening at location co-ordinates latitude 7°10′N and longitude 5°05′E for 6 weeks.The daily temperature T and humidity h ranged between 26℃≤T≤45℃ and 28%≤h_(2)≤80%.Temperature differenceDT and humidity differenceDh of 0.6℃≤ΔT≤18.3℃ and 1.0%≤Δh≤53%was achieved for the four cooling pad materials tested at three fan speeds.HighestDT andDh was recorded at fan speed of 4 m/s with shredded latex foam and jute sack respectively.The cooling efficiency(η)calculated for all the pads under the three speeds ranged from 17.3%≤η≤98.8%.Payback period(PBP)analysis indicated the considered EVC is economically feasible and investors will break even in 1.75 years.展开更多
Evaporative cooling(EC)is an ancient technique that is usually suitable for hot and dry climatic conditions due to the potential of water vapor evaporation.In this study,three kinds of evaporative cooling systems such...Evaporative cooling(EC)is an ancient technique that is usually suitable for hot and dry climatic conditions due to the potential of water vapor evaporation.In this study,three kinds of evaporative cooling systems such as direct EC(DEC),indirect EC(IEC),and Maisotsenko cycle EC(MEC)were locally developed at lab-scale.The performance of the systems was evaluated and compared for agricultural storage and livestock air-conditioning application in Pakistan.The experiments were performed for climatic conditions of Multan city(Pakistan)and the data were collected for hourly and daily basis.According to the results,it was observed that the DEC system has the ability to reduce the temperature of ambient air to an average of 8.5℃.Whilst IEC and MEC systems were able to drop the temperature of ambient air to an average of 6.8℃and 8.9℃,respectively.As per the results,the DEC system remained behind to provide desired conditions for livestock and agricultural product storage applications due to excessive humidity.On the other hand,the IEC and MEC systems can achieve the desired conditions for livestock application,but could not provide feasible conditions for various fruits and vegetable storage.The study concludes that hybrid EC systems can be developed to provide desired conditions for a wide range of applications under varying climatic conditions.展开更多
The location of exhaust air vents of an evaporative cooling system can have significant effects on providing thermal comfort and controlling humidity, temperature and air distribution in buildings. In the current stud...The location of exhaust air vents of an evaporative cooling system can have significant effects on providing thermal comfort and controlling humidity, temperature and air distribution in buildings. In the current study, four different strategies have been evaluated for exhaust air vent locations to provide the optimum thermal comfort inside a typical residential house. This study provides a numerical solution for temperature and relative humidity profiles in the residential house and within the living space in each room typically at a height of 1.8 m or less. By evaluating different exhaust air vent locations in a room, the best strategy(ies) to provide more appropriate thermal comfort condition and obtained and as a conclusion, the exhaust vents should be located on furthest wall away from the entrance of the room and in the middle. The results provided in the current study can eventually be applied in the design of evaporative cooler exhaust vent systems in residential buildings and lead to improve the performance of these systems.展开更多
Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method us...Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.展开更多
The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural,physiological and even morphological mechanisms.However,the role of glabrous skin in this respect has been marginally a...The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural,physiological and even morphological mechanisms.However,the role of glabrous skin in this respect has been marginally addressed so far.The Helmeted Guineafowl(Numida meleagris)is a landfowl distributed across Sub-Saharan Africa with eight traditionally recognised extant subspecies.Among the most prominent morphological traits underlying intraspecific variability are size and pigmentation of the bare throat skin(or sack),which might be related to the different habitats and environmental conditions across its wide range.In order to explore the Helmeted Guineafowl range-wide sack variation and pigmentation in relation to thermoregulation and sexual signalling,we collected morphometric and environmental information for N.m.coronata integrating field data with the inspection of photographic material encompassing seven subspecies and environmental information from their habitats.Field data evidenced that sack size was significantly correlated with ambient temperature,thus pointing to a likely involvement of the throat sack in thermoregulation.When the pictorial data from all subspecies were pooled,sack size correlated negatively with biomass,rainfall and humidity,while a positive correlation was found with annual solar irradiation.Sack size correlated positively with monthly temperature variation among the bluethroated subspecies from southern Africa as opposed to the black-throated subspecies ranging north to Zambia and Mozambique.Still,in this latter group the sack was often larger during winter months,possibly to maximise solar radiation absorbance.Noteworthy,sack size was related to sex dimorphism in two subspecies.Sack morphology and colour in the Helmeted Guineafowl likely modulate body temperature by evaporative cooling or heating upon needs,but in some subspecies it is also seemingly related to sexual signalling.Additional studies are needed to fully understand the multifunctionality of this important morphological feature in this species.展开更多
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial asp...High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.展开更多
This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as th...This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.展开更多
The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecu...The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).展开更多
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need...The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).展开更多
The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air cond...The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.展开更多
文摘A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of the solution is proved and the conditions for the coolant flux under which the abladtion process will complete in finite time are also determined. Finally, we show the existence of critical coolant flux beyond which the ablation material begin melting.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1602700 and 2022YFB2502104)the National Natural Science Foundation of China(22375089)+1 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332)Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund(BE2022605).
文摘Passive cooling holds tremendous potential in improving thermal comfort because of its zero energy consumption and cost-effectiveness.However,currently reported radiative cooling materials primarily focus on hydrophobic polymer films,inevi-tably leading to sweat accumulation and limited cooling efficiency in hot-humid environments.Herein,an advanced Janus membrane with excellent temperature-moisture management capabilities is developed,which combines radiative cooling and evaporative heat dissipation.Modification with Calcium sulfite(CaSO3)nanoparticles not only enhances the optical properties(state-of-the-art solar reflectance of 96.6%,infrared emittance of 96.1%)but also improves the wettability of the polylactic acid fiber membrane.Especially 15%emittance improvement is achieved due to the strong infrared radiation ability of CaSO3.The membranes with opposite wettability realize the directional sweat transport(high one-way transport index of 945%).Excellent radiative cooling capability is demonstrated with sub-ambient cooling of 5.8°C in the dry state.The Janus membranes covering sweaty skin exhibit a 46%shorter drying time and a 2°C lower average evaporation temperature compared to cotton fabric,indicating highly efficient thermal and moisture management.This work provides an efficient route to achieving smart textiles that enable the human body to adapt to complex environmental conditions.
基金supported by the Shandong Natural Science Foundation(Grant No.ZR2022ME008)the Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project(2022TSGC2018)+3 种基金the Shenzhen Science and Technology Program(KCXFZ20201221173409026)The financial supports from the“Young Scholars Program of Shandong University”(YSPSDU,No.2018WLJH73)the Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University(Program Number ZJUCEU2020011)the Shandong Natural Science Foundation(Grant No.ZR2021ME118)are gratefully acknowledged。
文摘A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption.
文摘We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 = 1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 inK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling.
基金Project(51171041) supported by the National Natural Science Foundation of China
文摘The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.
基金Project supported by the State Key Basic Research Program (Grant No 2006CB921202)the National Natural Science Foundation of China (Grant No 10334050)
文摘The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is 〈 100 ttm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is 〉 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.
基金Project supported by the Shanghai Pujiang Programme and the National Basic Research Programme of China (Grant No 2005CB724506)the National Natural Science Foundation of China (Grant No 10604057)
文摘This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301503the National Natural Science Foundation of China under Grant Nos 11674358 and 11434015the Instrument Project of the Chinese Academy of Sciences under Grant No YJKYYQ20170025
文摘We experimentally observe the dynamic evolution of atoms in the evaporative cooling, by in-situ imaging the plugged hole of ultracold atoms. Ultracold rubidium atoms confined in a magnetic trap are plugged using a blue-detuned laser beam with a waist of 20 m at a wavelength of 767 nm. We probe the variation of the atomic temperature and width versus the radio frequency in the evaporative cooling. Both the behaviors are in good agreement with the calculation of the trapping potential dressed by the rf signal above the threshold temperature,while deviating from the calculation near the phase transition. To accurately obtain the atomic width, we use the plugged hole as the reference to optimize the optical imaging system by precisely minimizing the artificial structures due to the defocus effect.
文摘The high surface area of porous media enhances its efficacy for evaporative cooling,however,the evaporation of pure substances often encounters issues including local overheating and unstable heat transfer.To address these challenges,a volume of fluid(VOF)model integrated with a species transport model was developed to predict the evaporation processes of ternary mixtures(water,glycerol,and 1,2-propylene glycol)in porous ceramics in this study.It reveals that the synergistic effects of thermal conduction and convective heat transfer significantly influence the mixtures evaporation,causing the fluctuations in evaporation rates.The obtained result shows a significant increase in water evaporation rates with decreasing the microcolumn size.At a pore size of 30μm and a porosity of 30%,an optimal balance between capillary forces and flow resistance yields a peak water release rate of 96.0%.Furthermore,decreasing the glycerol content from 70%to 60%enhances water release by 10.6%.The findings in this work propose the approaches to optimize evaporative cooling technologies by controlling the evaporation of mixtures in porous media.
基金The work is financially supported by the National Natural Science Foundation of China(No.51706099)The authors would like to express sincere thanks for the sponsorship.
文摘This paper numerically investigates the performance of a novel combined cross-regenerative cross flow(C-RC)thermoelectric assisted indirect evaporative cooling(TIEC)system.This C-RC TIEC system combines the indirect evaporative cooling and thermoelectric cooling technologies.A heat and mass transfer model is developed to perform the performance analysis and optimization of this novel system.Performance comparison between the novel C-RC TIEC system and a regenerative cross flow TIEC system is conducted under various operating conditions.It is found that the novel system provides better performance with higher coefficient of performance(C O P)and higher dew point effectiveness than the regenerative cross flow TIEC system,especially under smaller working current and smaller number of thermoelectric cooling modules.The performance optimization of the novel system is also made by investigating the influences of primary air parameters,three different mass flow rate ratios,as well as the length ratio of the left wet channel to the whole wet channel.The results show that there exist optimal mass flow rate ratios and wet channel length ratio resulting in the maximum C O P.
文摘The viability of some waste as cooling pads for evaporative cooling application in South-Western Nigeria was experimentally assessed.This is to ascertain their effectiveness as a substitute for costly imported pads in a low income environment.Also presented was the feasibility of utilizing standalone evaporative coolers for storage and selling of fruits in South-Western Nigeria.Natural ambient air was forced through the various pads at three different fan speeds and constant cooling pad thickness of 30 mm.Performance characteristics were considered based on daily analysis using temperature and humidity data measured from morning to evening at location co-ordinates latitude 7°10′N and longitude 5°05′E for 6 weeks.The daily temperature T and humidity h ranged between 26℃≤T≤45℃ and 28%≤h_(2)≤80%.Temperature differenceDT and humidity differenceDh of 0.6℃≤ΔT≤18.3℃ and 1.0%≤Δh≤53%was achieved for the four cooling pad materials tested at three fan speeds.HighestDT andDh was recorded at fan speed of 4 m/s with shredded latex foam and jute sack respectively.The cooling efficiency(η)calculated for all the pads under the three speeds ranged from 17.3%≤η≤98.8%.Payback period(PBP)analysis indicated the considered EVC is economically feasible and investors will break even in 1.75 years.
基金funded by Bahauddin Zakariya University,Multan,Pakistan under the Director Research/ORIC grant entitled“Development and performance evaluation of prototypes of direct and indirect evaporative cooling-based air-conditioning systems”。
文摘Evaporative cooling(EC)is an ancient technique that is usually suitable for hot and dry climatic conditions due to the potential of water vapor evaporation.In this study,three kinds of evaporative cooling systems such as direct EC(DEC),indirect EC(IEC),and Maisotsenko cycle EC(MEC)were locally developed at lab-scale.The performance of the systems was evaluated and compared for agricultural storage and livestock air-conditioning application in Pakistan.The experiments were performed for climatic conditions of Multan city(Pakistan)and the data were collected for hourly and daily basis.According to the results,it was observed that the DEC system has the ability to reduce the temperature of ambient air to an average of 8.5℃.Whilst IEC and MEC systems were able to drop the temperature of ambient air to an average of 6.8℃and 8.9℃,respectively.As per the results,the DEC system remained behind to provide desired conditions for livestock and agricultural product storage applications due to excessive humidity.On the other hand,the IEC and MEC systems can achieve the desired conditions for livestock application,but could not provide feasible conditions for various fruits and vegetable storage.The study concludes that hybrid EC systems can be developed to provide desired conditions for a wide range of applications under varying climatic conditions.
文摘The location of exhaust air vents of an evaporative cooling system can have significant effects on providing thermal comfort and controlling humidity, temperature and air distribution in buildings. In the current study, four different strategies have been evaluated for exhaust air vent locations to provide the optimum thermal comfort inside a typical residential house. This study provides a numerical solution for temperature and relative humidity profiles in the residential house and within the living space in each room typically at a height of 1.8 m or less. By evaluating different exhaust air vent locations in a room, the best strategy(ies) to provide more appropriate thermal comfort condition and obtained and as a conclusion, the exhaust vents should be located on furthest wall away from the entrance of the room and in the middle. The results provided in the current study can eventually be applied in the design of evaporative cooler exhaust vent systems in residential buildings and lead to improve the performance of these systems.
基金supported by the Open Research Project of the Major Science and Technology Infrastructure in the Chinese Academy of Sciences-Application of Evaporative Cooling Technology in the Field of Accelerator
文摘Cooling is very important for the safe operation of an electron cyclotron resonance ion source(ECRIS),especially when the window current density is very high(up to 11 A/mm2).We proposed an innovative cooling method using evaporative cooling technology.A demonstration prototype was designed,built and tested.The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz.A simple computational model was developed to predict the characteristics of the two-phase flow.The predicted temperatures agreed well with the on-site test data within 2 K.We also proposed useful design criteria.The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.
基金funded by a research grant from the Percy Fitzpatrick Institute of African Ornithology,University of Cape Town,South Africa[REF.B 717]Partial support was provided by the Portuguese Foundation for Science and Technology[FCT fellowships PTDC/BAA-AGR/28866/2017 and CEECIND/04084/2017]the Spanish Government,Ministry of Universities(“María Zambrano”–Next Generation EU)。
文摘The responses of ground-dwelling birds to heat and cold stress encompass a variety of behavioural,physiological and even morphological mechanisms.However,the role of glabrous skin in this respect has been marginally addressed so far.The Helmeted Guineafowl(Numida meleagris)is a landfowl distributed across Sub-Saharan Africa with eight traditionally recognised extant subspecies.Among the most prominent morphological traits underlying intraspecific variability are size and pigmentation of the bare throat skin(or sack),which might be related to the different habitats and environmental conditions across its wide range.In order to explore the Helmeted Guineafowl range-wide sack variation and pigmentation in relation to thermoregulation and sexual signalling,we collected morphometric and environmental information for N.m.coronata integrating field data with the inspection of photographic material encompassing seven subspecies and environmental information from their habitats.Field data evidenced that sack size was significantly correlated with ambient temperature,thus pointing to a likely involvement of the throat sack in thermoregulation.When the pictorial data from all subspecies were pooled,sack size correlated negatively with biomass,rainfall and humidity,while a positive correlation was found with annual solar irradiation.Sack size correlated positively with monthly temperature variation among the bluethroated subspecies from southern Africa as opposed to the black-throated subspecies ranging north to Zambia and Mozambique.Still,in this latter group the sack was often larger during winter months,possibly to maximise solar radiation absorbance.Noteworthy,sack size was related to sex dimorphism in two subspecies.Sack morphology and colour in the Helmeted Guineafowl likely modulate body temperature by evaporative cooling or heating upon needs,but in some subspecies it is also seemingly related to sexual signalling.Additional studies are needed to fully understand the multifunctionality of this important morphological feature in this species.
文摘High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.
文摘This investigation focused on the analysis of using the M-cycle (Maisotsenko cycle) to improve the efficiency of a gas turbine engine. By combining the M-cycle with an open Brayton cycle, a new cycle, is known as the MCTC (Maisotsenko combustion turbine cycle), was formed. The MCTC used an indirect evaporative air cooler as a saturator with a gas turbine engine. The saturator was applied on the side of the turbine exhaust (M-cycle#2) in the analysis. The analysis included calculations and the development of an EES (engineering equation solver) code to model the MCTC system performance. The resulting performance curves were graphed to show the effects of several parameters on the thermal efficiency and net power output of the gas turbine engine. The models were also compared with actual experimental test that results from a gas turbine engine. Conclusions and discussions of results are also given.
基金Project supported by the National Natural Science Foundation of China (Grant No.12004199)。
文摘The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).
基金This work was supported by Natural Science Basic Research Program of Shaanxi(2021JQ-689).
文摘The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).
文摘The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.