Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those fact...Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those factors influencing the mean particle size were studied. The optimal synthetic conditions were obtained, i.e., evaporation temperature is 1200℃; argon flow rate is 0.4m3/h; amount of powder charged is 3g; distance from evaporation source is 10cm. It was found that the size of particles was governed by argon flow rate, evaporation temperature, amount of metal charged and distance from the source. The size increases remarkably with distance in the space where no metal vapor exists. This implies that the crystallites grow by coalescence. Electron micrographs and diffraction patterns are reproduced to show the size, shape and state of oxidations. Nanoparticles with definite crystal habits were sometimes observed among those with irregular ones.展开更多
A serials of Fe based nanometer powders were fabricated by reduced pressure gas evaporation process with induction current as the heating source. The formation regularities of the phases in as prepared powders and the...A serials of Fe based nanometer powders were fabricated by reduced pressure gas evaporation process with induction current as the heating source. The formation regularities of the phases in as prepared powders and the structures of the nanometer particles were investigated. Pure Fe nanometer powders with about 70% γ Fe phase is prepared in present study by using the powder collector with good cooling effect. In the nanometer powders of Fe Ni alloy, solid solution phase γ (Fe,Ni) and α Fe phase form, but for Fe Cr alloys only solid solution phase α (Fe,Cr) forms. In the nanometer powders of Fe Cu alloy, only pure metal phases of γ Fe and Cu form, and no compound or solid solution phase exists. The formation regularity of the phases in the nanometer powders of alloys obeys the common phase laws in bulk alloy state.展开更多
In present work.the ultrafine manganese particles were prepared by gas evaporation method.The structure,size distribution,growth morphology and surface oxidation for the particles were investi- gated by using X-ray di...In present work.the ultrafine manganese particles were prepared by gas evaporation method.The structure,size distribution,growth morphology and surface oxidation for the particles were investi- gated by using X-ray diffraction and electron microscopy.The results indicated that three types of the particles,with the structure of α-Mn,β-Mn and one unknown,respectively existed in the man- ganese particles.The growth morphology of the particles depended on the size and intrinsic structure.When exposed to air,the particles were slightly oxidized only in the surface layer and sta- ble in air.展开更多
文摘Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy. They are collected at various distances and those factors influencing the mean particle size were studied. The optimal synthetic conditions were obtained, i.e., evaporation temperature is 1200℃; argon flow rate is 0.4m3/h; amount of powder charged is 3g; distance from evaporation source is 10cm. It was found that the size of particles was governed by argon flow rate, evaporation temperature, amount of metal charged and distance from the source. The size increases remarkably with distance in the space where no metal vapor exists. This implies that the crystallites grow by coalescence. Electron micrographs and diffraction patterns are reproduced to show the size, shape and state of oxidations. Nanoparticles with definite crystal habits were sometimes observed among those with irregular ones.
文摘A serials of Fe based nanometer powders were fabricated by reduced pressure gas evaporation process with induction current as the heating source. The formation regularities of the phases in as prepared powders and the structures of the nanometer particles were investigated. Pure Fe nanometer powders with about 70% γ Fe phase is prepared in present study by using the powder collector with good cooling effect. In the nanometer powders of Fe Ni alloy, solid solution phase γ (Fe,Ni) and α Fe phase form, but for Fe Cr alloys only solid solution phase α (Fe,Cr) forms. In the nanometer powders of Fe Cu alloy, only pure metal phases of γ Fe and Cu form, and no compound or solid solution phase exists. The formation regularity of the phases in the nanometer powders of alloys obeys the common phase laws in bulk alloy state.
文摘In present work.the ultrafine manganese particles were prepared by gas evaporation method.The structure,size distribution,growth morphology and surface oxidation for the particles were investi- gated by using X-ray diffraction and electron microscopy.The results indicated that three types of the particles,with the structure of α-Mn,β-Mn and one unknown,respectively existed in the man- ganese particles.The growth morphology of the particles depended on the size and intrinsic structure.When exposed to air,the particles were slightly oxidized only in the surface layer and sta- ble in air.