期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Analysis of the Performances of Unit Refrigeration Systems Based on Parallel Compressors with Consideration of the Volumetric and Isentropic Efficiency 被引量:8
1
作者 Daoming Shen Chao Gui +1 位作者 Jinhong Xia Songtao Xue 《Fluid Dynamics & Materials Processing》 EI 2020年第3期489-500,共12页
The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression... The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature. 展开更多
关键词 Parallel compressor unit evaporation temperature condensation temperature pressure ratio refrigeration capacity energy efficiency ratio(COP)
下载PDF
THEORY DEPOSITION MODEL AND INFLUENCING FACTORS DURING PROCESS OF PREPARING MICRO-LAYER LAMINATE BY EBPVD
2
作者 L.P.Shi X.D.He Y.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期283-287,共5页
This paper briefly introduces the characteristics of electron beam physical vapor depo-sition (EBPVD) technique and the whole process of preparing micro--layer compositelaminate. And several major influencing factors ... This paper briefly introduces the characteristics of electron beam physical vapor depo-sition (EBPVD) technique and the whole process of preparing micro--layer compositelaminate. And several major influencing factors are presented and discussed. It wasfound that residual gas pressure should be low enough to guarantee the unobstructedtransporfation of vapor steam and electron beam; the evaporation method and evapo-ration speed are up to the different vapor pressure deficit of compositions of raw mate-rials; and the substrate temperature could have great influence on the microstructureof the micro--layer laminates. 展开更多
关键词 micro-layer composite material EBPVD residual gas pressure evaporation method and speed substrate temperature
下载PDF
Evaporating Temperature Uniformity of the Pulsating Heat Pipe with Surfactant Solutions at Different Concentrations
3
作者 BAO Kangli WANG Xuehui +2 位作者 ZHANG Peng-E HAN Xiaohong TAN Jianming 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期183-191,共9页
The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe... The evaporating section of the pulsating heat pipe(PHP)is in direct contact with the electronics when it is used for heat dissipation,and thus the evaporating temperature uniformity has an important effect on the safe and reliable operation of electronic equipment.On the basis of these conditions,an experimental study on the evaporating temperature uniformity of the PHP with surfactant solutions at different concentrations was conducted at the heat fluxes of(1911–19427)W/m^(2).Sodium stearate was utilized for the solute;the surfactant solutions were prepared with the concentrations of 0.001 wt%,0.002 wt%,and 0.004 wt%,respectively,and the filling ratios of the PHP were 0.31,0.44 and 0.57,respectively.The experimental results revealed that under all tested working conditions,the highest temperature always appeared in the intermediate zone of the evaporating section.As the heat flux increased,the temperature differences among different zones rose initially and then reduced due to the change of the flow motion and the flow pattern.The evaporating temperature uniformity of the sodium stearate solutions-PHP was better than that of the deionized water-PHP,which suggested that the evaporating temperature uniformity might be improved through decreasing the surface tension.Furthermore,combined with the effect of surface tension and viscosity,for different filling ratios,the required concentration was different when the best evaporating temperature uniformity was achieved.To be specific,when the filling ratio were 0.31 and 0.44,the best evaporating temperature uniformity was achieved at the concentration of 0.004 wt%,while at the filling ratio of 0.57,the best evaporating temperature uniformity was attained at the concentration of 0.002 wt%. 展开更多
关键词 pulsating heat pipe surface tension evaporating temperature uniformity heat transfer
原文传递
Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
4
作者 YAN Wentao YANG Xin +1 位作者 LIU Tengqing WANG Shuangfeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期643-649,共7页
The heat transfer performance of ultra-thin flat heat pipes with#180 copper mesh wick was studied by numerical simulation for different heating powers.The length,width and height of the ultra-thin flat heat pipe are 8... The heat transfer performance of ultra-thin flat heat pipes with#180 copper mesh wick was studied by numerical simulation for different heating powers.The length,width and height of the ultra-thin flat heat pipe are 80 mm,8.5 mm and 1 mm,respectively.The temperature distribution and flow characteristics of ultra-thin flat heat pipes were simulated by coupling porous media model and user-defined function(UDF)in FLUENT.To validate the accuracy of the numerical model,the simulation results of the ultra-thin flat heat pipe are compared with the experimental data in predicting the evaporation section temperature.The numerical model has good accuracy for the one-dimensional heat transfer method of ultra-thin flat heat pipes.The velocity,pressure drop of the wick and total temperature difference have the same variation trend.With the increase of heating power,the temperature difference of ultra-thin flat heat pipes increases,and the pressure drop and the liquid velocity in the wick also increase. 展开更多
关键词 ultra-thin flat heat pipes evaporation section temperature temperature difference copper mesh SIMULATION
原文传递
Behavior of Element Vaporization and Composition Control of Fe-Ga Alloy during Vacuum Smelting
5
作者 Jian-wu YAN Liang LUO +2 位作者 A-fang PENG Chen-shu ZHANG Qing-hua CAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第11期983-989,共7页
Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between... Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between the change of Ga content and melting time was determined. The results demonstrated that saturated vapor pressure of Ga was higher than that of Fe under the same conditions. The difference value of critical evaporation temperature of Ga with and without Ar was nearly 800 K. The critical evaporation temperature of Fe was higher than that of Ga under vacuum, indicating that Ga was more volatile than Fe. At 1800 K, the evaporation rate of Ga was 84 times higher than that of Fe in the melt of Fe81Ga19 alloy. Under this condition, the change of Ga content and smelting time kept a linear relationship. The higher the temperature was, the faster the Ga content decreased, which was consistent with theoretical calculations. 展开更多
关键词 Fe-Ga alloy vacuum smelting critical evaporation temperature saturated vapor pressure smelting time
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部