期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Thermal transfer experimental research of a horizontal tube evaporative condenser
1
作者 TU Ai-min, ZHU D.S. 《Journal of Chemistry and Chemical Engineering》 2007年第1期75-81,共7页
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a... The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever. 展开更多
关键词 thermal transfer resistance horizontal tube heat exchanger evaporative condenser
下载PDF
Experimental Study of the Effect ofWater Salinity on the Parameters of an Equilibrium Droplet Cluster Levitating over aWater Layer
2
作者 Alexander A.Fedorets Eduard E.Kolmakov Leonid A.Dombrovsky 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期1-14,共14页
New experimental results,which are important for the potential use of small levitating droplets as biochemical microreactors,are reported.It is shown that the combination of infrared heating and reduced evaporation of... New experimental results,which are important for the potential use of small levitating droplets as biochemical microreactors,are reported.It is shown that the combination of infrared heating and reduced evaporation of saline water under the droplet cluster is sufficient to produce equilibriumsaltwater droplets over a wide temperature range.The resulting universal dependence of droplet size on temperature simplifies the choice of optimal conditions for generating stable droplet clusters with droplets of the desired size.A physical analysis of the experimental results on the equilibrium size of saltwater droplets makes it possible to separate the effects related to the salinity of the water layer under the droplet cluster from the effects related to the reduction of water evaporation from the water droplets.This is expected to be important for further studies of heat transfer and diffusion in layers of evaporating solutions and condensed droplets. 展开更多
关键词 Droplet cluster saltwater LEVITATION STABILIZATION heat transfer evaporation and condensation
下载PDF
Influence Factors on Particle Growth for On-line Aerosol Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry 被引量:1
3
作者 夏玮玮 提汝芳 +2 位作者 张子良 郑海洋 方黎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期269-273,I0001,共6页
An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization,... An evaporation/condensation flow cell was developed and interfaced with the matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometer for on-line bioaerosol detection and characterization, which allows matrix addition by condensation onto the laboratory-generated bioaerosol particles. The final coated particle exiting from the con- denser is then introduced into the aerodynamic particle sizer spectrometer or home-built aerosol laser time-of-flight mass spectrometer, and its aerodynamic size directly effects on the matrix-to-analyte molar ratio, which is very important for MALDI technique. In order to observe the protonated analyte molecular ion, and then determine the classification of bi- ological aerosols, the matrix-to-analyte molar ratio must be appropriate. Four experimental parameters, including the temperature of the heated reservoir, the initial particle size, its number concentration, and the matrix material, were tested experimentally to analyze their influences on the final particle size. This technique represents an on-line system of detection that has the potential to provide rapid and reliable identification of airborne biological aerosols. 展开更多
关键词 Matrix-assisted laser desorption/ionization Particle growth Homogeneous condensation Evaporation/condensation flow cell
下载PDF
Coupling effect of evaporation and condensation processes of organic Rankine cycle for geothermal power generation improvement 被引量:4
4
作者 YANG Hua MENG Nan LI Tai-lu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3372-3387,共16页
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th... Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output. 展开更多
关键词 Organic Rankine cycle geothermal power generation coupling effect of evaporation and condensation exergy analysis
下载PDF
Modeling and numerical analysis of evaporative condensing regenerator
5
作者 牛润萍 由世俊 《Journal of Central South University》 SCIE EI CAS 2012年第3期824-828,共5页
A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were c... A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were calculated by the mathematical model.The solution content first increases and then decreases along the solution flow direction.At y/Hr=0.98(where Hr is the height of regenerator),air humidity increases from 1.99% to 2.348% firstly and then decreases.The experimental results were used to validate mathematical model.It is indicated that the simulation results agree with experimental data well.The results not only show that the mathematical model can be used to predict the performance of regenerator,but also has great value in the design and improvement of evaporative condensing regenerator. 展开更多
关键词 heat and mass transfer mathematical model heat of condensation evaporative condensing regenerator
下载PDF
Theoretical Analysis of Annular Elliptic Finned Tube Evaporative Condenser Based on Field Measurement 被引量:2
6
作者 GU Yaxiu WANG Junwei +5 位作者 WANG Xinru Ll Mohua PAN Song LIU Guangdong WANG Wentao GING Zexiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1355-1369,共15页
In this article,a new evaporative condenser with an annular elliptic firmed tube heat exchanger that includes a round inner tube and elliptic outer finned tube was designed and analyzed.The refrigerant flows between t... In this article,a new evaporative condenser with an annular elliptic firmed tube heat exchanger that includes a round inner tube and elliptic outer finned tube was designed and analyzed.The refrigerant flows between the round inner tube and the elliptic outer tube,and it simultaneously exchanges heat with the cooling water in the inner tube,the spray water,and the cooling air flowing past the outer tube.Using field measurement for the traditional round finned tube evaporative condenser in the Futong Metro Station of Line 14 in Beijing,China,the theoretical heat transfer performance of the annular elliptic finned tube evaporative condenser was analyzed and simulated.Compared with a round finned tube heat exchanger,the heat exchange capacity of the annular elliptic finned tube increased by 2.34%to 9.28%;the total heat transfer coefficient increased by 47.42%,and the power consumption of the fan in the air-conditioning system with an annular elliptic finned tube heat exchanger decreased by 11.18%to 14.65%.Therefore,the energy-saving performance and the heat transfer performance of the new annular elliptic finned tube heat exchanger were enhanced compared to the round finned tube heat exchanger. 展开更多
关键词 evaporative condenser finned tube heat exchanger annular elliptic tube heat transfer enhancement air-conditioning system metro station
原文传递
Numerical Study of Heat and Moisture Transfer in Textile Materials by a Finite Volume Method 被引量:2
7
作者 C.Ye H.Huang +1 位作者 J.Fan W.Sun 《Communications in Computational Physics》 SCIE 2008年第9期929-948,共20页
This paper focuses on the numerical study of heat and moisture transfer in clothing assemblies,based on a multi-component and multiphase flow model which includes heat/moisture convection and conduction/diffusion as w... This paper focuses on the numerical study of heat and moisture transfer in clothing assemblies,based on a multi-component and multiphase flow model which includes heat/moisture convection and conduction/diffusion as well as phase change.A splitting semi-implicit finite volume method is proposed for solving a set of nonlinear convection-diffusion-reaction equations,in which the calculation of liquid water content absorbed by fiber is decoupled from the rest of the computation.The method maintains the conservation of air,vapor and heat flux(energy).Four types of clothing assemblies are investigated and comparison with experimental measurements are also presented. 展开更多
关键词 Fibrous porous medium multi-component flow clothing assemblies finite volume method condensation/evaporation.
原文传递
Theoretical Performance Analysis of an Ejector Enhanced High-Temperature Heat Pump with Dual-Pressure Condensation and Evaporation 被引量:1
8
作者 BAI Tao LIU Ye +1 位作者 YAN Gang YU Jianlin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1367-1379,共13页
In this paper,an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation is proposed to improve the system performance.Theoretical analyses of the system operation characteristics a... In this paper,an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation is proposed to improve the system performance.Theoretical analyses of the system operation characteristics are conducted using energetic and exergetic methods.The performance comparisons among the basic cycle,parallel compression cycle,and ejector enhanced cycle are conducted with six different refrigerants,including R245fa,R600a,R1234ze(Z),R1336mzz(Z),R1224yd(Z),and R1233zd(E).The results demonstrate that environmentally-friendly refrigerant R1234ze(Z)would be a promising alternative refrigerant.Compared with the basic cycle and parallel compression cycle at selected operation conditions,29.5%and 12.6%improvements in COP,and 16.7%and 11.1%higher system exergy efficiency are achieved in the ejector enhanced cycle on average.The volumetric heating capacity of the ejector enhanced cycle is increased by 15.7%–21.7%.The ejector enhanced cycle outperforms the other two cycles in high-temperature heat pump applications at the large temperature lift and temperature rise in the heat sink.The assessment offers an option to improve the energy utilization efficiency of the high-temperature heat pumps. 展开更多
关键词 THERMODYNAMICS EXERGY high-temperature heat pump EJECTOR dual-temperature condensation/evaporation
原文传递
Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China 被引量:6
9
作者 CHEN JianPing DENG ChunPing +7 位作者 WANG XuLong NI YunYan SUN YongGe ZHAO Zhe LIAO JianDe WANG PeiRong ZHANG DiJia LIANG DiGang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期972-991,共20页
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity ... It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area. 展开更多
关键词 Condensate Waxy oil Heavy oil Light hydrocarbons Evaporative fractionation Phase-controlled fractionation Southern margin of Junggar Basin
原文传递
On-line matrix addition for detecting aerosol particles
10
作者 ZHOU Liuzhu1,2, ZHU Yuan1, GUO Xiaoyong1, ZHAO Wenwu1, ZHENG Hai-yang1, Gu Xuejun1, FANG Li1 & ZHANG Weijun1 1. Lab of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Qufu Normal University, Qufu 273165, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2006年第2期187-194,共8页
Single aerosol particles were measured by matrix-assisted laser desorp-tion/ionization (MALDI) with an aerosol time-of-flight mass spectrometer (ATOFMS). The inlet to the ATOFMS was coupled with an evaporation/condens... Single aerosol particles were measured by matrix-assisted laser desorp-tion/ionization (MALDI) with an aerosol time-of-flight mass spectrometer (ATOFMS). The inlet to the ATOFMS was coupled with an evaporation/condensation flow cell that allowed matrix addition by condensation onto the particles. The coated particles entered the ion source through three-stage differentially pumped capillary inlet and were then ionized by a focused 266 nm Nd:YAG laser. The mass spectra and aerodynamic size of the single particles can be obtained simultaneously. The on-line matrix addition technique makes it possible to identify biological aerosols in real-time. 展开更多
关键词 ATOFMS evaporation/condensation MALDI.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部