The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the pre...The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.展开更多
A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documen...A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documents several key weather systems,from planetary scale to mesoscale,that contributed to the extreme rainfall during this event.The main findings of this study are as follows.First,the convectively active phase of the MJO was favorable for the establishment of a cyclonic circulation and the northward expansion of the Intertropical Convergence Zone(ITCZ).The active disturbances in the northward ITCZ helped direct abundant moisture from adjacent oceans towards Hainan Island continuously throughout the event,where it interacted with cold air from the midlatitudes and caused heavy rain.Second,the 8-daylong PHRE can be divided into three processes according to different synoptic systems:peripheral cloud clusters of a tropical depression-type disturbance over the central SCS in process 1;interactions between the abnormally far north ITCZ and the invading cold air in process 2;and the newly formed tropical depression near Hainan Island in process 3.In the relatively stable synoptic background of each process,meso-α and meso-β-scale cloud clusters repeatedly traveled along the same path to Hainan Island.Finally,based on these analyses,a conceptual model is proposed for this type of PHRE in autumn over the northern SCS,which demonstrates the influences of multiscale systems.展开更多
基金support of the National Natural Science Fundation of China (Nos. 41574105 and 41674118)the National Science and Technology Major Project of China (No. 2016ZX05027-002)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03)
文摘The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
基金Supported by the National(Key)Basic Research and Development(973)Project of China(2012CB417201)National Natural Science Foundation of China(41375053)
文摘A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documents several key weather systems,from planetary scale to mesoscale,that contributed to the extreme rainfall during this event.The main findings of this study are as follows.First,the convectively active phase of the MJO was favorable for the establishment of a cyclonic circulation and the northward expansion of the Intertropical Convergence Zone(ITCZ).The active disturbances in the northward ITCZ helped direct abundant moisture from adjacent oceans towards Hainan Island continuously throughout the event,where it interacted with cold air from the midlatitudes and caused heavy rain.Second,the 8-daylong PHRE can be divided into three processes according to different synoptic systems:peripheral cloud clusters of a tropical depression-type disturbance over the central SCS in process 1;interactions between the abnormally far north ITCZ and the invading cold air in process 2;and the newly formed tropical depression near Hainan Island in process 3.In the relatively stable synoptic background of each process,meso-α and meso-β-scale cloud clusters repeatedly traveled along the same path to Hainan Island.Finally,based on these analyses,a conceptual model is proposed for this type of PHRE in autumn over the northern SCS,which demonstrates the influences of multiscale systems.