In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during v...In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during various succession stages o1 evergreen broad-leaf forest. The results showed that during various succession stages of evergreen broad-leaf forest in Yingzuijie National Nature Reserve, WD storage of each forest ranged from 1.26 to 8.82 t/hm^2, with the order of P. massoniana forest 〈 mixed broadleaf-coniferous forest 〈 evergreen broad-leaf forest, that is, it increased from early to late stages of the succession. At different succession stages, coarse woody debris (CWD) storage was 2 -9 times more than fine woody debris (FWD) storage, revealing that CWD was dominant in WD of each forest. CWD biomass accounted for 0.66% -2.21% of arbor biomass, so the forests were at the developmental stage.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests(EBLFs),with distribution centers in the karst regions of Yunnan,Guizhou,and Guangxi in southwestern...Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests(EBLFs),with distribution centers in the karst regions of Yunnan,Guizhou,and Guangxi in southwestern China.Based on the hemiparasitic and more or less liana habits of this genus,we hypothesized that its evolution and distribution were shaped by the development of EBLFs there.To test our hypothesis,the most comprehensive phylogenies of Brandisia hitherto were constructed based on plastome and nuclear loci(nrDNA,PHYA and PHYB);then divergence time and ancestral areas were inferred using the combined nuclear loci dataset.Phylogenetic analyses reconfirmed that Brandisia is a member of Orobanchaceae,with unstable placements caused by nuclear-plastid incongruences.Within Brandisia,three major clades were well supported,corresponding to the three subgenera based on morphology.Brandisia was inferred to have originated in the early Oligocene(32.69 Mya)in the Eastern Himalayas-SW China,followed by diversification in the early Miocene(19.45 Mya)in karst EBLFs.The differentiation dates of Brandisia were consistent with the origin of keystone species of EBLFs in this region(e.g.,Fagaceae,Lauraceae,Theaceae,and Magnoliaceae)and the colonization of other characteristic groups(e.g.,Gesneriaceae and Mahonia).These findings indicate that the distribution and evolution of Brandisia were facilitated by the rise of the karst EBLFs in East Asia.In addition,the woody and parasitic habits,and pollination characteristics of Brandisia may also be the important factors affecting its speciation and dispersal.展开更多
A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTF...A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.展开更多
A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil p...A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.展开更多
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern Ch...Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.展开更多
The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive...The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.展开更多
The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species a...The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species and stand structure on Mt. Tieshanping in Chongqing metropolis,Southwest China. The seeds from the remnant EBLF naturally facilitate the restoration process of artificial Pinus massoniana forests near it. The similarity of species composition between the artificial Pinus massoniana forests and the remnant EBLF and biodiversity index of the artificial Pinus massoniana forests decrease as the distance from the remnant EBLF increases. Castanopsis carlesii var. spinusa is the dominant species in the ground vegetation,shrub layer and sub-tree layer of the Pinus massoniana forests near the remnant EBLF. However,the natural restoration processes of those farther away from the remnant EBLF are restricted for the absence of seed source of the inherent components of the remnant EBLF,and the anthropogenic measures should be taken to facilitate the restoration process.展开更多
This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range o...This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range of selective cutting intensities. We sampled three plots of mixed Korean pine and broad-leaf forest in Lushuihe Forestry Bureau of Jilin province, China. Plot 1, a control, was unlogged Korean pine broad-leaf forest. In plots 2 and 3, Korean pine was selectively cut at 15 and 30 % intensity, respectively, in the 1970s. Other species were rarely cut. We used point-pattern analysis to research the spatial distributions of four tree species and quantify spatial correlations between Korean pine and the other three species, Amur linden (Tilia amurensis Rupr.), Manchurian ash (Fraxinus mandshurica Rupr.), and Mongolian oak (Quercus mongolica Fisch.) in all three plots. The results of the study show that selective cutting at 15 % intensity did not significantly change either the species spatial patterns or the spatial correlation between Korean pine and broadleaf species. Selective cutting at 30 % intensity slightly affected the growth of Korean pine and valuable species in forest communities, and the effect was considered nondestructive and recoverable.展开更多
We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 fam...We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 families, 37 genera, 40 species and 1771 woody individuals in a 0.09 ha plot. Euphorbiaceae and Moraceae were the most species- rich families, and Castanopsis, Ficus and Terminaliawere the most species-rich genera. Bursera serrata Wall. ex Colebr. was the dominant species in terms of highest importance value (13%). Trema orientalis (L.) B1 was typically a light demanding species as it appeared in the top can- opy with only one individual having the seventh highest IV, but had no regeneration. The expected maximum number of species (Smax) was 140, indicating that many species may invade the forest as the Sm~ is greater than the recorded total number of species. The nature of the disappear- ance and appearance of species in the present forest reflects instability of floristic composition. The values of Shannon's index H' and Pielou's index J' (evenness) were 3.36 bit and 0.63, respectively. These values show moderately high species diversity as compared to other subtropical forests in the tropics. In addition, a sample area of 200 m2 in this forest would be sufficient for measuring the diversity indices H" and ,/', whereas the trend of J'may indicate the rate of equality of individuals among the different species decreased with increasing area. The distribu- tion pattern for the total stand was completely random. However, the dominant species showed aggregate distribution for small areas, but random distribution for large areas. The spatial association between species showed that the strongest positive interspecific association occurred between Streblus asper Lour. and Castanea indica Roxh. (09 = 0.51). As a whole, most species were weakly associated with each other, of which 58% species associations were completely negative. The result of cluster analysis showed that species pairs were spatially independent at all or most small clusters; stands of species from all clusters are mosa- ics of complete habitat and pioneer habitat. All patches in this forest community have similar habitat and regeneration niches, which could be a phenomenon for a young growth forest. Thus, the existence of habitat and regeneration niches may be an important factor in the maintenance of diversity in this forest.展开更多
Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current statu...Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.展开更多
We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots...We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots of 0.1 ha each (50 m × 20 m) at six locations enumerating all plants ? 10 cm girth at breast height. We pooled the data and computed various structural parameters. There were 152 species of 120 genera and 51 families of the study area. Of these, 118 (77%) were trees, 24 were climbers (16%) and 10 were shrubs (7%). Species richness varied from 58–99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2. Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats. Fifteen species are listed in various threat categories. Aglaia and Litsea were the most species-rich genera. Numbers of families ranged from 27–43 per 0.5 ha sample. Euphorbiaceae and Lauraceae were the most species-rich families. Stand density varied from 1714 to 2244 stems·ha?1 and basal area from 53.6 to 102.1 m2·ha?1. The vegetation was dominated by 3–6 species and six dominance patterns characterized the species composition within the hill complex. The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.展开更多
In 2013, we re-inventoried all lianas (≥1 cm diameter measured at 1.3 m from the rooting point) in four I-ha permanent plots distributed one each in four sites of inland tropical dry evergreen forest on the Coroman...In 2013, we re-inventoried all lianas (≥1 cm diameter measured at 1.3 m from the rooting point) in four I-ha permanent plots distributed one each in four sites of inland tropical dry evergreen forest on the Coromandel Coast (Pudukottai district) of peninsular India, established in 2003. Among the four sites, Shanmuganathapuram (SP) and Araiyapatti (AP) were much disturbed and the other two sites (Karisakkadu--KR and Maramadakki--MM) were moderately disturbed. We inventoried a total of 3425 lianas representing 37 species of 33 genera and 22 families. Over a decade (2003-2013) liana species richness increased at two sites (MM and SP) and no changes occurred at the other two sites. Liana abundance increased by 210, 211,164 and 162 individuals at sites AP, KR, MM and SP, respectively, and basal area increased (from 1.09 to 1.76 m2 at AP, 0.67 to 0.86 m2 at KR, 1.68 to 2.06 mz at MM, and from 0.44 to 1.06 m2 at SP). Over a 10-year period, three species (Abrus precatorius, Canavalia virosa, and Cocculus hirsutus) were lost and five species (Gloriosa superba, Ampelocissus tomentosa, Capparis sepiaria, Aganosma cymosa and Tiliacora acuminata) were newly added. Total aboveground biomass increased by 18.5, 0.74, 3.6 and 9.5 Mg ha-1, respectively, at sites AP, KR, MM and SP.展开更多
Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining a...Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.展开更多
Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urge...Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).展开更多
In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial dis...In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.展开更多
The distribution,quantification and fluxes of Pb were examined in an evergreen broadleaved forest in western Greece for three hydrological years.More specifically,concentrations and annual fluxes of Pb were determined...The distribution,quantification and fluxes of Pb were examined in an evergreen broadleaved forest in western Greece for three hydrological years.More specifically,concentrations and annual fluxes of Pb were determined in bulk and throughfall deposition as well as litterfall.The Pb concentrations were also measured in forest floor and mineral soil up to 80 cm and the isotopic ratios of 206Pb/207Pb were determined in soil layers and the parent rock material.High variability in the fluxes of the metal among the three hydrological years were found,evidence of the variability of Pb deposition in time.Litterfall fractions with a large surface area,like holm oak flowers,had high Pb concentrations.Applying a steady state model and considering the Pb amounts in throughfall and litterfall as inputs on the forest floor,the mean residence time of Pb in the forest floor was 94 years with a coefficient of variation equal to 41%.More observations are needed to lower the variability of the mean residence time.The isotopic ratio in the rock material was defined as the lithogenic ratio.The statistical tests showed that the petrol derived Pb migrated to the depth of 20 cm and its percentages in the soil pedon was in the range of 62%in the L horizon to 11%in the 10–20cm layer.In higher depths(>40 cm)preindustrial anthropogenic Pb affected the isotopic ratio.As the forest under consideration is remote from industrial activities,the results can serve as a baseline for future studies on Pb distribution and quantification.展开更多
Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge abo...Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge about these forests immediately. We measured evapotranspiration rates for a lowland dry evergreen forest in Kampong Thom Province, central Cambodia, using the energy balance Bowen ratio (EBBR) method based on meteorological data collected from a 60-m-high observation tower. Daily evapotranspiration was higher during the dry season than during the rainy season of the Asian monsoon climate. The seasonal variation in evapotranspiration generally corresponded to the seasonal difference in the vapor pressure deficit. A multi-layer model was used to simulate the seasonal variation in evapotranspiration. The multilayer model also reproduced the larger evapotranspiration rate in the dry season than in the rainy season. However, observed values substantially exceeded model-calculated results during certain periods at the beginning of the dry season and in the late dry season. Moreover, during the rainy season, the model tended to overestimate evapotranspiration. The differences between these observed and simulated values may have been caused by seasonal characteristics of photosynthesis and transpiration in the lowland dry evergreen forest that were not considered in the model simulation.展开更多
In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succe...In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.展开更多
Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included l...Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.展开更多
基金Supported by the International Science and Technology Cooperation Program of China(2011DFA90740)Science and Technology Cooperation Program between Ministry of Science and Technology of China and European Union(0906)+1 种基金Research and Innovation Foundation for Young Scholars of Hunan Academy of Forestry(2013LQJ08)Forestry Science and Technology Program of Hunan Province,China(XLK201417)
文摘In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during various succession stages o1 evergreen broad-leaf forest. The results showed that during various succession stages of evergreen broad-leaf forest in Yingzuijie National Nature Reserve, WD storage of each forest ranged from 1.26 to 8.82 t/hm^2, with the order of P. massoniana forest 〈 mixed broadleaf-coniferous forest 〈 evergreen broad-leaf forest, that is, it increased from early to late stages of the succession. At different succession stages, coarse woody debris (CWD) storage was 2 -9 times more than fine woody debris (FWD) storage, revealing that CWD was dominant in WD of each forest. CWD biomass accounted for 0.66% -2.21% of arbor biomass, so the forests were at the developmental stage.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金funded by the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1802232)the national youth talent support program+2 种基金CAS"Light of West China"ProgramYunnan youth talent support program(YNWR-QNBJ-2018-183 to Y.N.)Vietnam Academy of Science and Technology(UQDTCB.06/22-23)。
文摘Brandisia is a shrubby genus of about eight species distributed basically in East Asian evergreen broadleaved forests(EBLFs),with distribution centers in the karst regions of Yunnan,Guizhou,and Guangxi in southwestern China.Based on the hemiparasitic and more or less liana habits of this genus,we hypothesized that its evolution and distribution were shaped by the development of EBLFs there.To test our hypothesis,the most comprehensive phylogenies of Brandisia hitherto were constructed based on plastome and nuclear loci(nrDNA,PHYA and PHYB);then divergence time and ancestral areas were inferred using the combined nuclear loci dataset.Phylogenetic analyses reconfirmed that Brandisia is a member of Orobanchaceae,with unstable placements caused by nuclear-plastid incongruences.Within Brandisia,three major clades were well supported,corresponding to the three subgenera based on morphology.Brandisia was inferred to have originated in the early Oligocene(32.69 Mya)in the Eastern Himalayas-SW China,followed by diversification in the early Miocene(19.45 Mya)in karst EBLFs.The differentiation dates of Brandisia were consistent with the origin of keystone species of EBLFs in this region(e.g.,Fagaceae,Lauraceae,Theaceae,and Magnoliaceae)and the colonization of other characteristic groups(e.g.,Gesneriaceae and Mahonia).These findings indicate that the distribution and evolution of Brandisia were facilitated by the rise of the karst EBLFs in East Asia.In addition,the woody and parasitic habits,and pollination characteristics of Brandisia may also be the important factors affecting its speciation and dispersal.
文摘A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.
基金Project(No.30170770)supported by the National Natural Science Foundation of China.Corresponding author.Tel:0599-8504990Fax:0599-8516481E-mail:ffcyys@public.npptt.fj.cn.
文摘A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.
基金Project supported by the National Natural Science Foundation of China (No. 30170770).
文摘Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.
基金supported by the National Natural Science Foundation of China,No.41471051,41071040,31170195
文摘The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.
基金Project(30700094) supported by the National Natural Science Foundation of ChinaProject (CSTC, 2008BB7187) supported by the Natural Science Foundation of CQ CSTC, China+2 种基金Project (20092x07104-003-02)supported by the National Science and Technology MinistrySubsidy from the Pro Natural Fund of Japan for 2007Research project for a sustainable development of economic and social structure dependent on the environment of the eastern coast of Asia from Tokyo University of Information
文摘The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species and stand structure on Mt. Tieshanping in Chongqing metropolis,Southwest China. The seeds from the remnant EBLF naturally facilitate the restoration process of artificial Pinus massoniana forests near it. The similarity of species composition between the artificial Pinus massoniana forests and the remnant EBLF and biodiversity index of the artificial Pinus massoniana forests decrease as the distance from the remnant EBLF increases. Castanopsis carlesii var. spinusa is the dominant species in the ground vegetation,shrub layer and sub-tree layer of the Pinus massoniana forests near the remnant EBLF. However,the natural restoration processes of those farther away from the remnant EBLF are restricted for the absence of seed source of the inherent components of the remnant EBLF,and the anthropogenic measures should be taken to facilitate the restoration process.
基金funded by China National Science and Technology Support Program(Grant No.2012BAD21B02)
文摘This study aimed to demonstrate change in spatial correlation between Korean pine (Pinus koraiensis Sieb. et Zucc.) and three rare species, and change in spatial distribution of four species in response to a range of selective cutting intensities. We sampled three plots of mixed Korean pine and broad-leaf forest in Lushuihe Forestry Bureau of Jilin province, China. Plot 1, a control, was unlogged Korean pine broad-leaf forest. In plots 2 and 3, Korean pine was selectively cut at 15 and 30 % intensity, respectively, in the 1970s. Other species were rarely cut. We used point-pattern analysis to research the spatial distributions of four tree species and quantify spatial correlations between Korean pine and the other three species, Amur linden (Tilia amurensis Rupr.), Manchurian ash (Fraxinus mandshurica Rupr.), and Mongolian oak (Quercus mongolica Fisch.) in all three plots. The results of the study show that selective cutting at 15 % intensity did not significantly change either the species spatial patterns or the spatial correlation between Korean pine and broadleaf species. Selective cutting at 30 % intensity slightly affected the growth of Korean pine and valuable species in forest communities, and the effect was considered nondestructive and recoverable.
文摘We investigated the floristic composition, woody species diversity and spatial distribution of trees in a tropical wet evergreen forest in Kaptai national park in Chittagong Hill Tracks, Bangladesh. We recorded 25 families, 37 genera, 40 species and 1771 woody individuals in a 0.09 ha plot. Euphorbiaceae and Moraceae were the most species- rich families, and Castanopsis, Ficus and Terminaliawere the most species-rich genera. Bursera serrata Wall. ex Colebr. was the dominant species in terms of highest importance value (13%). Trema orientalis (L.) B1 was typically a light demanding species as it appeared in the top can- opy with only one individual having the seventh highest IV, but had no regeneration. The expected maximum number of species (Smax) was 140, indicating that many species may invade the forest as the Sm~ is greater than the recorded total number of species. The nature of the disappear- ance and appearance of species in the present forest reflects instability of floristic composition. The values of Shannon's index H' and Pielou's index J' (evenness) were 3.36 bit and 0.63, respectively. These values show moderately high species diversity as compared to other subtropical forests in the tropics. In addition, a sample area of 200 m2 in this forest would be sufficient for measuring the diversity indices H" and ,/', whereas the trend of J'may indicate the rate of equality of individuals among the different species decreased with increasing area. The distribu- tion pattern for the total stand was completely random. However, the dominant species showed aggregate distribution for small areas, but random distribution for large areas. The spatial association between species showed that the strongest positive interspecific association occurred between Streblus asper Lour. and Castanea indica Roxh. (09 = 0.51). As a whole, most species were weakly associated with each other, of which 58% species associations were completely negative. The result of cluster analysis showed that species pairs were spatially independent at all or most small clusters; stands of species from all clusters are mosa- ics of complete habitat and pioneer habitat. All patches in this forest community have similar habitat and regeneration niches, which could be a phenomenon for a young growth forest. Thus, the existence of habitat and regeneration niches may be an important factor in the maintenance of diversity in this forest.
基金Supported by International Science&Technology Cooperation Program of China(2012DFB30030)Science and Technology Plan Project of Hunan Forestry(XLK201417)+1 种基金Youth Science and Technology Innovation Fund of Hunan Academy of Forestry(2013LQJ08,2013LQJ11)Science and Technology Plan Project of Hunan Provincial Department of Science and Technology(2012WK4010)
文摘Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.
基金support from the Ministry of Environment and Forests, Government of India
文摘We analyze the structure and composition of old-growth wet evergreen forest of Nelliampathy hills, the chain of hills lying immediately south of Palghat Gap, in the southern Western Ghats of India. We sampled 30 plots of 0.1 ha each (50 m × 20 m) at six locations enumerating all plants ? 10 cm girth at breast height. We pooled the data and computed various structural parameters. There were 152 species of 120 genera and 51 families of the study area. Of these, 118 (77%) were trees, 24 were climbers (16%) and 10 were shrubs (7%). Species richness varied from 58–99 per 0.5 ha sample and Shannon indices of diversity ranged from 4.4 to 5.2. Fifty-nine per cent (89 species) of the species were Indian Sub-continent elements and 34% (51 species) are endemic to the Western Ghats. Fifteen species are listed in various threat categories. Aglaia and Litsea were the most species-rich genera. Numbers of families ranged from 27–43 per 0.5 ha sample. Euphorbiaceae and Lauraceae were the most species-rich families. Stand density varied from 1714 to 2244 stems·ha?1 and basal area from 53.6 to 102.1 m2·ha?1. The vegetation was dominated by 3–6 species and six dominance patterns characterized the species composition within the hill complex. The old-growth evergreen forests of Nelliampathy exist as small fragments rich in biodiversity and can be used as benchmarks for comparison with disturbed forests.
基金Pondicherry University for financial support received through UGC University fellowship
文摘In 2013, we re-inventoried all lianas (≥1 cm diameter measured at 1.3 m from the rooting point) in four I-ha permanent plots distributed one each in four sites of inland tropical dry evergreen forest on the Coromandel Coast (Pudukottai district) of peninsular India, established in 2003. Among the four sites, Shanmuganathapuram (SP) and Araiyapatti (AP) were much disturbed and the other two sites (Karisakkadu--KR and Maramadakki--MM) were moderately disturbed. We inventoried a total of 3425 lianas representing 37 species of 33 genera and 22 families. Over a decade (2003-2013) liana species richness increased at two sites (MM and SP) and no changes occurred at the other two sites. Liana abundance increased by 210, 211,164 and 162 individuals at sites AP, KR, MM and SP, respectively, and basal area increased (from 1.09 to 1.76 m2 at AP, 0.67 to 0.86 m2 at KR, 1.68 to 2.06 mz at MM, and from 0.44 to 1.06 m2 at SP). Over a 10-year period, three species (Abrus precatorius, Canavalia virosa, and Cocculus hirsutus) were lost and five species (Gloriosa superba, Ampelocissus tomentosa, Capparis sepiaria, Aganosma cymosa and Tiliacora acuminata) were newly added. Total aboveground biomass increased by 18.5, 0.74, 3.6 and 9.5 Mg ha-1, respectively, at sites AP, KR, MM and SP.
基金Acknowledgments The authors thank Ming-Gang Zhang and Katharina Filz for suggestions about problem of multicollinearity and thank Damien Georges for suggestions about modeling.
文摘Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.
基金This item was supportedby the National ScienceFoundationof P.R.China (No.39330040,39460022)
文摘Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201806,XLK201925)National Forestry Science and Technology Development Project(KJZXSA2018011,KJZXSA2019009)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2019132068)
文摘In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.
文摘The distribution,quantification and fluxes of Pb were examined in an evergreen broadleaved forest in western Greece for three hydrological years.More specifically,concentrations and annual fluxes of Pb were determined in bulk and throughfall deposition as well as litterfall.The Pb concentrations were also measured in forest floor and mineral soil up to 80 cm and the isotopic ratios of 206Pb/207Pb were determined in soil layers and the parent rock material.High variability in the fluxes of the metal among the three hydrological years were found,evidence of the variability of Pb deposition in time.Litterfall fractions with a large surface area,like holm oak flowers,had high Pb concentrations.Applying a steady state model and considering the Pb amounts in throughfall and litterfall as inputs on the forest floor,the mean residence time of Pb in the forest floor was 94 years with a coefficient of variation equal to 41%.More observations are needed to lower the variability of the mean residence time.The isotopic ratio in the rock material was defined as the lithogenic ratio.The statistical tests showed that the petrol derived Pb migrated to the depth of 20 cm and its percentages in the soil pedon was in the range of 62%in the L horizon to 11%in the 10–20cm layer.In higher depths(>40 cm)preindustrial anthropogenic Pb affected the isotopic ratio.As the forest under consideration is remote from industrial activities,the results can serve as a baseline for future studies on Pb distribution and quantification.
文摘Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge about these forests immediately. We measured evapotranspiration rates for a lowland dry evergreen forest in Kampong Thom Province, central Cambodia, using the energy balance Bowen ratio (EBBR) method based on meteorological data collected from a 60-m-high observation tower. Daily evapotranspiration was higher during the dry season than during the rainy season of the Asian monsoon climate. The seasonal variation in evapotranspiration generally corresponded to the seasonal difference in the vapor pressure deficit. A multi-layer model was used to simulate the seasonal variation in evapotranspiration. The multilayer model also reproduced the larger evapotranspiration rate in the dry season than in the rainy season. However, observed values substantially exceeded model-calculated results during certain periods at the beginning of the dry season and in the late dry season. Moreover, during the rainy season, the model tended to overestimate evapotranspiration. The differences between these observed and simulated values may have been caused by seasonal characteristics of photosynthesis and transpiration in the lowland dry evergreen forest that were not considered in the model simulation.
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201925,XLK201806)National Forestry Science and Technology Development Project(KJZXSA2018011)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2018-LYPT-DW-064)
文摘In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Institute of Soil Science, Chinese Academy of Sciences.
文摘Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.