With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This ...With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This paper investigates the computation offloading problem of the coexistence and synergy between fog computing and cloud computing in IoE by jointly optimizing the offloading decisions, the allocation of computation resource and transmit power. Specifically, we propose an energy-efficient computation offloading and resource allocation(ECORA) scheme to minimize the system cost. The simulation results verify the proposed scheme can effectively decrease the system cost by up to 50% compared with the existing schemes, especially for the scenario that the computation resource of fog computing is relatively small or the number of devices increases.展开更多
The proliferation of the Internet of Everything(IoE) has pulled computing to the edge of the network, such as smart homes, autonomous vehicles, robots, and so on. The operating system as the manager of the computing r...The proliferation of the Internet of Everything(IoE) has pulled computing to the edge of the network, such as smart homes, autonomous vehicles, robots, and so on. The operating system as the manager of the computing resources, is also facing new challenges.For IoE systems and applications, an innovative operating system is missing to support services, collect data, and manage the things. However, IoE applications are all around us and increasingly becoming a necessity rather than a luxury. Therefore, it is important that the process of configuring and adding devices to the IoE is not a complex one. The ease of installation, operation, and maintenance of devices on the network unarguably plays an important role in the wide spread use of IoE devices in smart homes and everywhere else. In this paper, we propose Sofie, which is a smart operating system for the IoE. We also give the design of Sofie. Sofie can be implemented via different IoT systems, such as Home Assistant, openHAB, and so on. In order to implement Sofie to get some early experience, we leverage Home Assistant to build a prototype for the smart home. Our work shows that Sofie could be helpful for practitioners to better manage their IoE systems.展开更多
In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, ...In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, data, and services in the Internet of Everything. Moreover, such efficient query processing techniques can provide strong facilitate the research on Internet of Everything security issues. By looking into the unique characteristics in the IoE application environment, such as high heterogeneity, high dynamics, and distributed, we develop a novel search engine model, and build a dynamic prediction model of the IoE sensor time series to meet the real-time requirements for the Internet of Everything search environment. We validated the accuracy and effectiveness of the dynamic prediction model using a public sensor dataset from Intel Lab.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No. 2018YJS008)the National Natural Science Foundation of China (61471031, 61661021, 61531009)+4 种基金Beijing Natural Science Foundation (L182018)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2017D14)the State Key Laboratory of Rail Traffi c Control and Safety (Contract No. RCS2017K009)Science and Technology Program of Jiangxi Province (20172BCB22016, 20171BBE50057)Shenzhen Science and Technology Program under Grant (No. JCYJ20170817110410346)
文摘With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This paper investigates the computation offloading problem of the coexistence and synergy between fog computing and cloud computing in IoE by jointly optimizing the offloading decisions, the allocation of computation resource and transmit power. Specifically, we propose an energy-efficient computation offloading and resource allocation(ECORA) scheme to minimize the system cost. The simulation results verify the proposed scheme can effectively decrease the system cost by up to 50% compared with the existing schemes, especially for the scenario that the computation resource of fog computing is relatively small or the number of devices increases.
文摘The proliferation of the Internet of Everything(IoE) has pulled computing to the edge of the network, such as smart homes, autonomous vehicles, robots, and so on. The operating system as the manager of the computing resources, is also facing new challenges.For IoE systems and applications, an innovative operating system is missing to support services, collect data, and manage the things. However, IoE applications are all around us and increasingly becoming a necessity rather than a luxury. Therefore, it is important that the process of configuring and adding devices to the IoE is not a complex one. The ease of installation, operation, and maintenance of devices on the network unarguably plays an important role in the wide spread use of IoE devices in smart homes and everywhere else. In this paper, we propose Sofie, which is a smart operating system for the IoE. We also give the design of Sofie. Sofie can be implemented via different IoT systems, such as Home Assistant, openHAB, and so on. In order to implement Sofie to get some early experience, we leverage Home Assistant to build a prototype for the smart home. Our work shows that Sofie could be helpful for practitioners to better manage their IoE systems.
基金supported by the National Natural Science Foundation of China under NO.61572153, NO. 61702220, NO. 61702223, and NO. U1636215the National Key research and Development Plan (Grant No. 2018YFB0803504)
文摘In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, data, and services in the Internet of Everything. Moreover, such efficient query processing techniques can provide strong facilitate the research on Internet of Everything security issues. By looking into the unique characteristics in the IoE application environment, such as high heterogeneity, high dynamics, and distributed, we develop a novel search engine model, and build a dynamic prediction model of the IoE sensor time series to meet the real-time requirements for the Internet of Everything search environment. We validated the accuracy and effectiveness of the dynamic prediction model using a public sensor dataset from Intel Lab.