Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios...Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.展开更多
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ...Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.展开更多
The phase structure and magnetic properties of high-Co containing permanent magnets with high thermal stability have been systematically studied in this work.It is abnormal that the coercivity of annealed samples was ...The phase structure and magnetic properties of high-Co containing permanent magnets with high thermal stability have been systematically studied in this work.It is abnormal that the coercivity of annealed samples was slightly lower than that of sintered samples,while the coercivity was usually enhanced after annealing in conventional Nd–Fe–B samples.Further analysis showed that in addition to RE2(Fe,Co)14B main phase and RE-rich grain boundary phase,there were also new Co-rich magnetic phases located in the grain boundary.During annealing,the phase structures of high-Co containing magnets were readjusted,especially the increasing Co-rich magnetic phase and emerging RE-rich particles precipitated from the main phase.Eventually,the isolated RE-rich particles would act as the pinning center of the domain wall movement in demagnetization process.It was confirmed that the coercivity of annealed high-Co containing magnets was controlled by both nucleation and pinning.Pinning mechanism can partially compensate for the weakening of magnetic isolation due to increased Co-rich magnetic phase,which explained the moderate decrease in coercivity of annealed high-Co containing magnets.The discovery of new coercivity mechanism contributed to in-depth understanding of high-Co containing magnets.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy...Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.展开更多
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu...Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.展开更多
17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstruc...17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstructures and phase compositions of the as-sintered and post-electrolyzed samples were investigated. The impurity contents in the electrolyte and the cathode metal were detected in order to investigate the corrosion characteristic of the elements of Fe, Ni and Cu in the anode. A dense NiFe2O4 layer was observed on the surface of anode and thickened with prolonging the electrolysis time. In the newly formed dense ceramic layer, NiO phase disappeared as a result of being swallowed by NiFe2O4 phase, and the metal phase was oxidized during the electrolysis in which Cu element showed a higher dissolution rate than Fe and Ni elements. The formation process of the dense ceramic layer during the electrolysis was presented and explained by using the corrosion mode of the metal phase and the transformation mechanism from NiO phase to NiFe2O4 phase.展开更多
The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductiv...The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refi...The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.展开更多
Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing proc...Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing process of DO22 phase can be divided into two stages. At the early stage, composition in the centre part of L12 phase almost remains unchanged, and the nucleation and growth of DO22 phase is controlled by the decrease of interface between L12 phases. At the late stage, part of V for growth of DO22 phase is supplied from the centre part of L12 phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing L12 phase migrates into the centre part of L12 phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of DO22 phase is controlled by the evolution of antisite atoms and ternary additions in the centre part of L12 phase.展开更多
Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al...Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
The primary phase evolution of ADC12 aluminum alloy rheo-processed by mechanical rotational barrel system was studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microsc...The primary phase evolution of ADC12 aluminum alloy rheo-processed by mechanical rotational barrel system was studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). The semisolid slurry analyses show that the solid fraction of ADC12 aluminum alloy increases from 0.38 to 0.43 while the roundness decreases from 0.45 to 0.38 with increasing the rotational speed from 30 to 120 r/min. When the pouring temperature decreases from 620 to 580 °C, the primary α(Al) morphology changes from spheroidal to rosette-like. Besides, the average particle size of primary phase and solid fraction increase with the decrease of pouring temperature. By rheo-diecasting process, the components with fine, spherical and uniformly distributed primary α(Al) particles were obtained, and the best microstructure was contained at the pouring temperature ranging from 595 to 605 °C. The rheo-processing feasibility of ADC12 aluminum alloy can be explained by the grains controlled growth theory, and the semisolid slurry obeys the Mullins-Sekerka criterion when solidifying in the high pressure die casting machine.展开更多
Studies of lithology, sedimentary facies and the distribution regularity of SiO2 and Al2O3 contents and Al2O3/SiO2 ratio allow us to divide the Upper Pleistocene-Holocene Series represented by the MUanggouwan section ...Studies of lithology, sedimentary facies and the distribution regularity of SiO2 and Al2O3 contents and Al2O3/SiO2 ratio allow us to divide the Upper Pleistocene-Holocene Series represented by the MUanggouwan section in China's Salawnsu River valley into six segments: MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6. The boundary ages for MGS1 (the Dishaogouwan and Dagouwan Formations), MGS2 (the upper Chengchuan Formation), MGS3 (the middle Chengchuan Formation), MGS4 (the lower Chengchuan Formation), MGS5 (most strata of the Salawusu Formation) and MGS6 (the bottom of the Salawusu Formation and the top of the Lishi Formation) correspond to those of MIS1, MIS2, MIS3, MIS4, MISS and MIS6, respectively, from deep sea sediments or continental glaciers. MGS5 can be subdivided into five subsegments (MGS5a, MGS5b, MGS5c, MGS5d and MGS5e) and the boundary ages of these subsegments correspond to those of MISSa, MISSb, MIS5c, MIS5d and MIS5e, respectively. Based on the paleoenvironment and paleoecology indicated by the primary chemical elements, fossil vertebrates, mollusks and pollen grains, we hypothesize that MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6 and the subsegments of MGS5 match the corresponding stages for oxygen isotopes in the deep sea sediments and continental glaciers, and the substages of MIS5 in terms of climatic characters, further explaining the phenomena that determined the formation of the late Quaternary strata and the paleontology of the Salawusu River valley. These phenomena relate to fluctuations in the global climate (and particularly in the East Asian monsoon) during the glacial and interglacial periods.展开更多
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金Funded by the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3800100 and 2021YFB3800101)the National Natural Science Foundation of China(62004089,U2001217,and U19A2089)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515110439,2019B1515120083,and2022A1515011218)the Shenzhen Science and Technology Program(JCYJ20190809150811504 and KQTD2015033110182370)the HKRGC General Research Funds(16312216)the Shenzhen&Hong Kong Joint Research Program(SGLH20180622092406130)the Shenzhen Engineering Research and Development Center for Flexible Solar Cel s Project funding from Shenzhen Development and Reform Committee(2019-126)the Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee(JCYJ20200109141014474)the Guangdong-Hong Kong-Macao Joint Laboratory(2019B121205001)
文摘Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films.
基金Project supported by National Key R&D Program of China(Grant No.2021YFB3803003)Youth Innovation Promotion Association CAS(Grant No.2023311).
文摘The phase structure and magnetic properties of high-Co containing permanent magnets with high thermal stability have been systematically studied in this work.It is abnormal that the coercivity of annealed samples was slightly lower than that of sintered samples,while the coercivity was usually enhanced after annealing in conventional Nd–Fe–B samples.Further analysis showed that in addition to RE2(Fe,Co)14B main phase and RE-rich grain boundary phase,there were also new Co-rich magnetic phases located in the grain boundary.During annealing,the phase structures of high-Co containing magnets were readjusted,especially the increasing Co-rich magnetic phase and emerging RE-rich particles precipitated from the main phase.Eventually,the isolated RE-rich particles would act as the pinning center of the domain wall movement in demagnetization process.It was confirmed that the coercivity of annealed high-Co containing magnets was controlled by both nucleation and pinning.Pinning mechanism can partially compensate for the weakening of magnetic isolation due to increased Co-rich magnetic phase,which explained the moderate decrease in coercivity of annealed high-Co containing magnets.The discovery of new coercivity mechanism contributed to in-depth understanding of high-Co containing magnets.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金Project (2012CB619501) supported by the National Basic Research Program of China
文摘Intermetallic phase evolution of 5059 aluminum alloy during homogenization was investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The results show that severe dendritic segregation exists in as-cast alloy. The dissolvable intermetallic phases in as-cast alloy consist of Zn-and Cu-rich non-equilibriumβ(Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si phase. During the homogenization, Zn- and Cu-rich non-equilibrium β (Al3Mg2) phase, Fe-rich eutectic Al6Mn phase and equilibrium Mg2Si gradually dissolve into matrix. Fine dispersed β(Al3Mg2) particles and rod-shaped Al6Mn particles form in the Al matrix after homogenization. The proper homogenization processing is at 450 °C for 24 h, which is consistent with the results of homogenizing kinetic analysis.
基金Projects(51072045,51102074)supported by the National Natural Science Foundation of China
文摘Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.
基金Project (2005CB623703) supported by the National Basic Research Program of ChinaProject (50721003) supported by the National Natural Science Fund for Innovation Group of ChinaProject (2008AA030501) supported by the National High-Tech Research and Development Program of China
文摘17(Cu-10Ni)-(NiFe2O4-10NiO) cermets were prepared by cold pressing and sintering in nitrogen atmosphere, and tested as inert anode for aluminum electrolysis at 960 °C for 10 and 40 h, respectively. Microstructures and phase compositions of the as-sintered and post-electrolyzed samples were investigated. The impurity contents in the electrolyte and the cathode metal were detected in order to investigate the corrosion characteristic of the elements of Fe, Ni and Cu in the anode. A dense NiFe2O4 layer was observed on the surface of anode and thickened with prolonging the electrolysis time. In the newly formed dense ceramic layer, NiO phase disappeared as a result of being swallowed by NiFe2O4 phase, and the metal phase was oxidized during the electrolysis in which Cu element showed a higher dissolution rate than Fe and Ni elements. The formation process of the dense ceramic layer during the electrolysis was presented and explained by using the corrosion mode of the metal phase and the transformation mechanism from NiO phase to NiFe2O4 phase.
基金Project(5157406)supported by the National Natural Science Foundation of China
文摘The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.
基金Projects (50941020, 10902086, 50875217, 20903075) supported by the National Natural Science Foundation of ChinaProjects (SJ08-ZT05, SJ08-B14) supported by the Natural Science Foundation of Shaanxi Province, China
文摘Correlation between site occupation evolution of alloying elements in L12 phase and growth of DO22 phase in Ni75Al7.5V17.5 was studied using microscopic phase field model. The results demonstrate that the growing process of DO22 phase can be divided into two stages. At the early stage, composition in the centre part of L12 phase almost remains unchanged, and the nucleation and growth of DO22 phase is controlled by the decrease of interface between L12 phases. At the late stage, part of V for growth of DO22 phase is supplied from the centre part of L12 phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing L12 phase migrates into the centre part of L12 phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of DO22 phase is controlled by the evolution of antisite atoms and ternary additions in the centre part of L12 phase.
基金Projects(51174168,51274167)supported by the National Natural Science Foundation of ChinaProject(2013M532082)supported by Postdoctoral Science Foundation of ChinaProjects(13R21421700,13R21421800)supported by the Postdoctoral Science Foundation of Shanghai,China
文摘Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金Project(51404153) supported by the National Natural Science Foundation of China
文摘The primary phase evolution of ADC12 aluminum alloy rheo-processed by mechanical rotational barrel system was studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). The semisolid slurry analyses show that the solid fraction of ADC12 aluminum alloy increases from 0.38 to 0.43 while the roundness decreases from 0.45 to 0.38 with increasing the rotational speed from 30 to 120 r/min. When the pouring temperature decreases from 620 to 580 °C, the primary α(Al) morphology changes from spheroidal to rosette-like. Besides, the average particle size of primary phase and solid fraction increase with the decrease of pouring temperature. By rheo-diecasting process, the components with fine, spherical and uniformly distributed primary α(Al) particles were obtained, and the best microstructure was contained at the pouring temperature ranging from 595 to 605 °C. The rheo-processing feasibility of ADC12 aluminum alloy can be explained by the grains controlled growth theory, and the semisolid slurry obeys the Mullins-Sekerka criterion when solidifying in the high pressure die casting machine.
基金This study was supported by the National Basic Research Program of China (No. 2004CB720206) the National Natural Science Foundation of China (No. 49971009)the RGC (HKU 7243/04H) Grant of the HKSAR and the Chinese Academy of Sciences (No. KZCX2-SW-118)
文摘Studies of lithology, sedimentary facies and the distribution regularity of SiO2 and Al2O3 contents and Al2O3/SiO2 ratio allow us to divide the Upper Pleistocene-Holocene Series represented by the MUanggouwan section in China's Salawnsu River valley into six segments: MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6. The boundary ages for MGS1 (the Dishaogouwan and Dagouwan Formations), MGS2 (the upper Chengchuan Formation), MGS3 (the middle Chengchuan Formation), MGS4 (the lower Chengchuan Formation), MGS5 (most strata of the Salawusu Formation) and MGS6 (the bottom of the Salawusu Formation and the top of the Lishi Formation) correspond to those of MIS1, MIS2, MIS3, MIS4, MISS and MIS6, respectively, from deep sea sediments or continental glaciers. MGS5 can be subdivided into five subsegments (MGS5a, MGS5b, MGS5c, MGS5d and MGS5e) and the boundary ages of these subsegments correspond to those of MISSa, MISSb, MIS5c, MIS5d and MIS5e, respectively. Based on the paleoenvironment and paleoecology indicated by the primary chemical elements, fossil vertebrates, mollusks and pollen grains, we hypothesize that MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6 and the subsegments of MGS5 match the corresponding stages for oxygen isotopes in the deep sea sediments and continental glaciers, and the substages of MIS5 in terms of climatic characters, further explaining the phenomena that determined the formation of the late Quaternary strata and the paleontology of the Salawusu River valley. These phenomena relate to fluctuations in the global climate (and particularly in the East Asian monsoon) during the glacial and interglacial periods.