期刊文献+
共找到628篇文章
< 1 2 32 >
每页显示 20 50 100
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
1
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
CNC Thermal Compensation Based on Mind Evolutionary Algorithm Optimized BP Neural Network 被引量:6
2
作者 Yuefang Zhao Xiaohong Ren +2 位作者 Yang Hu Jin Wang Xuemei Bao 《World Journal of Engineering and Technology》 2016年第1期38-44,共7页
Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpred... Thermal deformation error is one of the most important factors affecting the CNCs’ accuracy, so research is conducted on the temperature errors affecting CNCs’ machining accuracy;on the basis of analyzing the unpredictability and pre-maturing of the results of the genetic algorithm, as well as the slow speed of the training speed of the particle algorithm, a kind of Mind Evolutionary Algorithm optimized BP neural network featuring extremely strong global search capacity was proposed;type KVC850MA/2 five-axis CNC of Changzheng Lathe Factory was used as the research subject, and the Mind Evolutionary Algorithm optimized BP neural network algorithm was used for the establishment of the compensation model between temperature changes and the CNCs’ thermal deformation errors, as well as the realization method on hardware. The simulation results indicated that this method featured extremely high practical value. 展开更多
关键词 Thermal Errors Thermal Error Compensation Genetic algorithm Mind evolutionary algorithm BP neural network
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
3
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
Forecasting solar power generation using evolutionary mating algorithm-deep neural networks
4
作者 Mohd Herwan Sulaiman Zuriani Mustaffa 《Energy and AI》 EI 2024年第2期346-362,共17页
This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power genera... This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC power output using real solar power plant measurements spanning a 34-day period, recorded at 15-minute intervals. The intricate nonlinear relationship between solar irradiation, ambient temperature, and module temperature is captured for accurate prediction. Additionally, the paper conducts a comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Mating Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search Algorithm (HSA-DNN), DNN with Adaptive Moment Estimation optimizer (ADAM) and Nonlinear AutoRegressive with eXogenous inputs (NARX). The experimental results distinctly highlight the exceptional performance of EMA-DNN by attaining the lowest Root Mean Squared Error (RMSE) during testing. This contribution not only advances solar power forecasting methodologies but also underscores the potential of merging metaheuristic algorithms with contemporary neural networks for improved accuracy and reliability. 展开更多
关键词 Deep learning neural networks evolutionary mating algorithm Feed forward neural networks Metaheuristic Optimizers Solar PV
原文传递
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network 被引量:7
5
作者 马千里 郑启伦 +2 位作者 彭宏 钟谭卫 覃姜维 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期536-542,共7页
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structu... This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series. 展开更多
关键词 chaotic time series multi-step-prediction co-evolutionary strategy recurrent neural networks
下载PDF
Multi-objective evolutionary optimization for hardware-aware neural network pruning
6
作者 Wenjing Hong Guiying Li +2 位作者 Shengcai Liu Peng Yang Ke Tang 《Fundamental Research》 CAS CSCD 2024年第4期941-950,共10页
Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks.In recent years,as growing evidence shows that conventional network pruning methods employ inappropriate pr... Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks.In recent years,as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics,and as new types of hardware become increasingly available,hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention,Both network accuracy and hardware efficiency(latency,memory consumption,etc.)are critical objectives to the success of network pruning,but the conflict between the multiple objectives makes it impossible to find a single optimal solution.Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective.In this paper,we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms(MOEAs).Specifically,we formulate the problem as a multi-objective optimization problem,and propose a novel memetic MOEA,namely HAMP,that combines an efficient portfoliobased selection and a surrogate-assisted local search,to solve it.Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method. 展开更多
关键词 Multi-objective optimization evolutionary algorithm neural network pruning Hardware-awaremachine learning Hardware efficiency
原文传递
An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification
7
作者 Bidyadhar Subudhi Debashisha Jena 《International Journal of Automation and computing》 EI 2009年第2期137-144,共8页
This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of ... This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error. 展开更多
关键词 Differential evolution neural network (NN) nonlinear system identification Levenberg Marquardt algorithm
下载PDF
Position detection of BLDC rotor based on adaptive wavelet neural network
8
作者 李永红 陈家斌 +1 位作者 赵圣飞 岳凤英 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期26-30,共5页
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ... Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability. 展开更多
关键词 Brushless DC(BLDC) adaptive wavelet neural network differential evolution(DE)algorithm
下载PDF
Integrated Navigation Filtering Method Based on Wavelet Neural Network Optimized by MEA Model
9
作者 Zhu Tao Saisai Gao Ying Huang 《国际计算机前沿大会会议论文集》 2019年第1期642-644,共3页
In the experiment of combined navigation filtering using wavelet neural network, the initial parameters of the network have the influence of randomness on network convergence and navigation accuracy. A combined naviga... In the experiment of combined navigation filtering using wavelet neural network, the initial parameters of the network have the influence of randomness on network convergence and navigation accuracy. A combined navigation filtering method based on wavelet neural network optimized by mind evolution algorithm is proposed. Firstly, the efficient global search ability of the mind evolution algorithm was used to quickly and accurately obtain the initial parameters of the appropriate wavelet neural network, and then the optimized wavelet neural network was applied to directly predict the position and velocity error data. This method is different from the traditional filtering method, while avoiding the drawbacks of the neural network. The simulation experiments with wavelet neural network and GA-wavelet network were carried out. The results show that the proposed method can effectively improve the accuracy of the integrated navigation system and provide a feasible path for combined navigation filtering. 展开更多
关键词 Integrated NAVIGATION Data FUSION WAVELET neural network MIND evolution algorithm
下载PDF
Group Contribution Method Supervised Neural Network for Precise Design of Organic Nonlinear Optical Materials
10
作者 Jinming Fan Bowei Yuan +1 位作者 Chao Qian Shaodong Zhou 《Precision Chemistry》 2024年第6期263-272,共10页
To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical prope... To rationalize the design of D-π-A type organic small-molecule nonlinear optical materials,a theory guided machine learning framework is constructed.Such an approach is based on the recognition that the optical property of the molecule is predictable upon accumulating the contribution of each component,which is in line with the concept of group contribution method in thermodynamics.To realize this,a Lewis-mode group contribution method(LGC)has been developed in this work,which is combined with the multistage Bayesian neural network and the evolutionary algorithm to constitute an interactive framework(LGC-msBNN-EA).Thus,different optical properties of molecules are afforded accurately and efficientlyby using only a small data set for training.Moreover,by employing the EA model designed specifically for LGC,structural search is well achievable.The origins of the satisfying performance of the framework are discussed in detail.Considering that such a framework combines chemical principles and data-driven tools,most likely,it will be proven to be rational and efficient to complete mission regarding structure design in related fields. 展开更多
关键词 supervised Bayesian neural network Lewis-type group contribution method nonlinear optical material molecule design evolutionary algorithm
原文传递
Optimized parallel architecture of evolutionary neural network for mass spectrometry data processing
11
作者 Amin Jarrah Bashar Haddad +1 位作者 Mohammad A.Al-Jarrah Muhammad Bassam Obeidat 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第1期231-257,共27页
Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimizat... Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimization techniques used widely to provide candidate solutions that lead to the fitness of the problem.ENN has the extraordinary ability to search the global and learning the approximate optimal solution regardless of the gradient information of the error functions.However,ENN requires high computation and processing which requires parallel processing platforms such as field programmable gate arrays(FPGAs)and graphic processing units(GPUs)to achieve a good performance.This work involves different new implementations of ENN by exploring and adopting different techniques and opportunities for parallel processing.Different versions of ENN algorithm have also been implemented and parallelized on FPGAs platform for low latency by exploiting the parallelism and pipelining approaches.Real data form mass spectrometry data(MSD)application was tested to examine and verify our implementations.This is a very important and extensive computation application which needs to search and find the optimal features(peaks)in MSD in order to distinguish cancer patients from control patients.ENN algorithm is also implemented and parallelized on single core and GPU platforms for comparison purposes.The computation time of our optimized algorithm on FPGA and GPU has been improved by a factor of 6.75 and 6,respectively. 展开更多
关键词 Genetic algorithm neural networks evolutionary neural network fieldprogrammable gate array(FPGA) graphic processing unit(GPU) parallel architecture optimization techniques
原文传递
Modelling reference evapotranspiration using gene expression programming and artificial neural network at Pantnagar,India
12
作者 Pangam Heramb Pramod Kumar Singh +1 位作者 K.V.Ramana Rao A.Subeesh 《Information Processing in Agriculture》 EI CSCD 2023年第4期547-563,共17页
Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allo... Evapotranspiration is an essential component of the hydrological cycle that is of particular interest for water resource planning.Its quantification is helpful in irrigation scheduling,water balance studies,water allocation,etc.Modelling of reference evapotranspiration(ET0)using both gene expression programming(GEP)and artificial neural network(ANN)techniques was done using the daily meteorological data of the Pantnagar region,India,from 2010 to 2019.A total of 15 combinations of inputs were used in developing the ET0 models.The model with the least number of inputs consisted of maximum and minimum air temperatures,whereas the model with the highest number of inputs consisted of maximum air temperature,minimum air temperature,mean relative humidity,number of sunshine hours,wind speed at 2mheight and extra-terrestrial radiation as inputs and with ET0 as the output for all the models.All the GEP models were developed for a single functional set and pre-defined genetic operator values,while the best structure in each ANN model was found based on the performance during the testing phase.It was found that ANN models were superior to GEP models for the estimation purpose.It was evident from the reduction in RMSE values ranging from 2%to 56%during training and testing phases in all the ANN models compared with GEP models.The ANN models showed an increase of about 0.96%to 9.72%of R2 value compared to the respective GEP models.The comparative study of these models with multiple linear regression(MLR)depicted that the ANN and GEP models were superior to MLR models. 展开更多
关键词 Artificial neural networks evolutionary algorithms Gene Expression Programming Machine Learning Regression Analysis Reference evapotranspiration MODELS
原文传递
Optimization of Electrocardiogram Classification Using Dipper Throated Algorithm and Differential Evolution
13
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +4 位作者 Faten Khalid Karim Sameer Alshetewi Abdelhameed Ibrahim Abdelaziz A.Abdelhamid D.L.Elsheweikh 《Computers, Materials & Continua》 SCIE EI 2023年第2期2379-2395,共17页
Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is ... Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%). 展开更多
关键词 ELECTROCARDIOGRAM differential evolution algorithm dipper throated optimization neural networks
下载PDF
Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture 被引量:7
14
作者 Lan Chen Xinting Yang +3 位作者 Chuanheng Sun Yizhong Wang Daming Xu Chao Zhou 《Information Processing in Agriculture》 EI 2020年第2期261-271,共11页
In aquaculture,the accurate prediction of feed intake for group fish is considered to be crucial to any feeding system.Previous studies mainly used mathematical statistics to establish the mapping relationship between... In aquaculture,the accurate prediction of feed intake for group fish is considered to be crucial to any feeding system.Previous studies mainly used mathematical statistics to establish the mapping relationship between feed intake and influencing factors.The result was easily influenced by subjective experience.To solve the above issues,this paper proposed a feed intake prediction model for group fish using the back-propagation neural network(BPNN)and mind evolutionary algorithm(MEA).Firstly,four factors,including water temperature,dissolved oxygen,the average fish weight and the number of fish were selected as the input of the BPNN model.Secondly,the initial weight and threshold of the BPNN were optimized by the MEA to improve the matching precision.Finally,the prediction model was achieved after training.Experimental results showed that the correlation coefficient between the predicted and measured values reached 0.96.And the root mean squared error,mean square error,mean absolute error,mean absolute percent error of the model was 6.89,47.53,6.17 and 0.04,respectively.In addition,the proposed method also had the better nonlinear fitting ability than BPNN and GA-BP.By using an intelligent optimization algorithm,the mapping relationship between fish intake and environmental factors was automatically established,thus avoiding the subjectivity of traditional methods.Therefore,it can lay a theoretical foundation for the development of intelligent feeding equipment and meet the needs of the smart fishery. 展开更多
关键词 BP neural network Feed intake prediction Group fish Mind evolutionary algorithm
原文传递
Color space conversion of digital photofinishing by neural network 被引量:2
15
作者 穆宝忠 余飞鸿 《Chinese Optics Letters》 SCIE EI CAS CSCD 2005年第9期556-558,共3页
A practical neural network model was designed to realize the color space conversion of digital photofinishing. The sampling, network structure and training process were introduced respectively. But in actual training,... A practical neural network model was designed to realize the color space conversion of digital photofinishing. The sampling, network structure and training process were introduced respectively. But in actual training, the networks fall into local minimum in all probability. To solve this problem, evolutionary programming (EP) algorithm was applied and the learning rate was adaptively adjusted. In the experiment, the performance of network was compared with pre-optimizing. Then the color space conversion was evaluated bv the simulation error of samples from the point of color difference. 展开更多
关键词 Backpropagation Computer simulation evolutionary algorithms MAPPING neural networks
原文传递
Network evolution driven by dynamics applied to graph coloring
16
作者 吴建设 李力光 +2 位作者 王晓华 于昕 焦李成 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期262-267,共6页
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other han... An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring. 展开更多
关键词 network dynamics evolution of network evolutionary strategies graph coloring problem
下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:2
17
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
下载PDF
聚焦热度变化、主题动态与情感趋势的微博舆情演化研究
18
作者 王虎 吴浩伟 江长斌 《情报杂志》 CSSCI 北大核心 2024年第11期144-151,128,共9页
[研究目的]系统探讨微博舆情事件的演化特征,以提出针对性的对策建议,避免网络舆情扩散所可能引发的不利影响。[研究方法]为实现该目的,提出了基于CNN-BiLSTM-Attention的微博舆情多维特征演化分析框架,以深入剖析网络舆情的形成机制,... [研究目的]系统探讨微博舆情事件的演化特征,以提出针对性的对策建议,避免网络舆情扩散所可能引发的不利影响。[研究方法]为实现该目的,提出了基于CNN-BiLSTM-Attention的微博舆情多维特征演化分析框架,以深入剖析网络舆情的形成机制,进而优化对网络舆情的应对和处理策略。[研究结论]根据选取的事件从新浪微博获取数据,基于TF-IDF模型和K-Means聚类算法对微博舆情事件进行了维度划分,通过组合模型CNN-BiLSTM-Attention进行情感分类,并验证其准确性。最后,根据维度划分和情感分类的结果,结合舆情生命周期理论,从舆情热度、主题和情感三个方面研究了微博舆情事件的演化情况,并从生命周期和主题情感两方面得出网络舆情应对策略。 展开更多
关键词 网络舆情 舆情演化 情感分析 神经网络 聚类算法 文本分析 微博
下载PDF
应用差分进化-神经网络模型的杀爆弹瞄准点分配方法
19
作者 徐豫新 贾志远 +2 位作者 杨晓红 索非 张益荣 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第2期146-155,共10页
为在不增加计算时耗的前提下提升多枚杀爆弹对面目标打击毁伤效能,建立融入动爆威力计算的多瞄准点规划方法.对面目标采用结构化网格划分方法实现多枚杀爆弹对目标毁伤区域的精确计算,并进行计算结果验证,基于多次计算结果采用神经网络... 为在不增加计算时耗的前提下提升多枚杀爆弹对面目标打击毁伤效能,建立融入动爆威力计算的多瞄准点规划方法.对面目标采用结构化网格划分方法实现多枚杀爆弹对目标毁伤区域的精确计算,并进行计算结果验证,基于多次计算结果采用神经网络方法建立单枚弹药对面目标毁伤区域的计算代理模型,在同样计算条件下,比非代理模型计算时间缩短1000倍;据此,通过差分进化算法实现多枚杀爆弹对面目标打击瞄准点及末端弹道参数的规划.通过实例对比分析表明:该瞄准点规划方法形成的打击方案比传统以毁伤半径为输入的方法毁伤效果大幅提升,最低提升25.5%,且单次规划时间不超过3 s,解决了瞄准点规划中毁伤效能模型复杂度与计算耗时之间的矛盾. 展开更多
关键词 杀爆弹 动爆威力 瞄准点规划 毁伤幅员 神经网络 差分进化算法
下载PDF
综掘工作面风流调控下风速及瓦斯粉尘浓度融合预测模型研究
20
作者 龚晓燕 邹浩 +6 位作者 刘壮壮 陈龙 付浩然 孙育恒 李昊 王新雨 牛虎明 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第10期136-146,共11页
针对综掘工作面传统的通风总量控制管理模式不能根据实际需求进行风流调控,造成瓦斯及粉尘聚集和污染隐患等问题,对风流调控下的风速及瓦斯粉尘浓度多源数据融合神经网络预测模型进行了研究。采用欧拉-拉格朗日法建立了风流调控下的瓦... 针对综掘工作面传统的通风总量控制管理模式不能根据实际需求进行风流调控,造成瓦斯及粉尘聚集和污染隐患等问题,对风流调控下的风速及瓦斯粉尘浓度多源数据融合神经网络预测模型进行了研究。采用欧拉-拉格朗日法建立了风流调控下的瓦斯及粉尘气固耦合模型并进行了测试验证,模拟分析瓦斯和粉尘颗粒在综掘巷道的分布情况,获取大量不同风流调控方案下的风速及瓦斯粉尘浓度样本数据。采用多层感知器神经网络技术建立预测模型结构,选取对瓦斯及粉尘浓度具有较大影响的风流调控等参数作为输入层,根据风速及瓦斯粉尘的隐患位置确定输出层,对样本数据进行预处理,通过引入差分进化算法搜索最佳隐藏层节点数和学习率,利用TensorFlow框架搭建多源数据融合神经网络预测模型。以陕北某矿综掘工作面为研究对象,对不同风流调控方案进行预测和井下实测验证。结果表明:该模型相对误差最大值为9.7%,具有较高的准确性;选取出风口距端头最短距离5 m和最远距离10 m这2种工况下的最佳调控方案,与调控前相比,风速符合规范要求,端头死角区瓦斯体积分数分别降低34%和35%,回风侧人行处平均粉尘质量浓度分别降低40%和41%,司机处粉尘质量浓度分别降低38%和36%,研究可为风流调控提供参考。 展开更多
关键词 综掘工作面 风流调控 风速 瓦斯及粉尘浓度 多源数据融合 神经网络预测 差分进化算法
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部