A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good...A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.展开更多
This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global sea...This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.展开更多
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s...A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.展开更多
In many real-world applications of evolutionary algorithms,the fitness of an individual requires a quantitative measure.This paper proposes a self-adaptive linear evolutionary algorithm (ALEA) in which we introduce ...In many real-world applications of evolutionary algorithms,the fitness of an individual requires a quantitative measure.This paper proposes a self-adaptive linear evolutionary algorithm (ALEA) in which we introduce a novel strategy for evaluating individual's relative strengths and weaknesses.Based on this strategy,searching space of constrained optimization problems with high dimensions for design variables is compressed into two-dimensional performance space in which it is possible to quickly identify 'good' individuals of the performance for a multiobjective optimization application,regardless of original space complexity.This is considered as our main contribution.In addition,the proposed new evolutionary algorithm combines two basic operators with modification in reproduction phase,namely,crossover and mutation.Simulation results over a comprehensive set of benchmark functions show that the proposed strategy is feasible and effective,and provides good performance in terms of uniformity and diversity of solutions.展开更多
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop...Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.展开更多
A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related t...A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related to the permissible land uses in certain parts of the mined area. The methodology combines desirability functions and evolution searching algorithms for selection of the optimal reclamation scheme. Its application for the reclamation planning of the Amynteon lignite surface mine in Greece indicated that it handles effectively spatial and non-spatial constraints and incorporates easily the decision-makers preferences regarding the reclamation strategy in the optimization procedure.展开更多
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H...Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.展开更多
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement...As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate.展开更多
Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functio...Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal Coding Strategy (DCS), which is convenient for space division and alterable precision, was proposed, and the theory analysis of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal code. In order to utilize the historial information of the existing individuals in the process of evolution and avoid repeated exploring, the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are better than the tradition GAs.展开更多
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem...A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.展开更多
The population-based efficient iterative evolutionary algorithm(EA)is differential evolution(DE).It has fewer control parameters but is useful when dealing with complex problems of optimization in the real world.A gre...The population-based efficient iterative evolutionary algorithm(EA)is differential evolution(DE).It has fewer control parameters but is useful when dealing with complex problems of optimization in the real world.A great deal of progress has already been made and implemented in various fields of engineering and science.Nevertheless,DE is prone to the setting of control parameters in its performance evaluation.Therefore,the appropriate adjustment of the time-consuming control parameters is necessary to achieve optimal DE efficiency.This research proposes a new version of the DE algorithm control parameters and mutation operator.For the justifiability of the suggested method,several benchmark functions are taken from the literature.The test results are contrasted with other literary algorithms.展开更多
Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dy...Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dynamically changing optimum.Our fuzzy genetic sharing(FGS) approach is based on a novel genetic algorithm with dynamic niche sharing(GADNS).FGS finds the optimal solutions,while maintaining the diversity of the population.For this,FGS uses several strategies.First,an unsupervised fuzzy clustering method is used to track multiple optima and perform GADNS.Second,a modified tournament selection is used to control selection pressure.Third,a novel mutation with an adaptive mutation rate is used to locate unexplored search areas.The effectiveness of FGS in dynamic environments is demonstrated using the generalized dynamic benchmark generator(GDBG).展开更多
Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic...Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic algorithm for dealing with different optimization tasks.The basis of the algorithm is inspired by imperialistic competition.It attempts to present the social policy of imperialisms(referred to empires)to control more countries(referred to colonies)and use their sources.If one empire loses its power,among the others making a competition to take possession of it.Design/methodology/approach–In fuzzy imperialist competitive algorithm(FICA),the colonies have a degree of belonging to their imperialists and the top imperialist,as in fuzzy logic,rather than belonging completely to just one empire therefore the colonies move toward the superior empire and their relevant empires.Simultaneously for balancing the exploration and exploitation abilities of the ICA.The algorithms are used for optimization have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures.FICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing fuzzy logic on it.Findings–Therefore several solution procedures,including ICA,FICA,genetic algorithm,particle swarm optimization,tabu search and simulated annealing optimization algorithm are considered.Finally numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures.Test results present the suitability of the proposed fuzzy ICA for convex functions with little fluctuations.Originality/value–The proposed evolutionary algorithm,FICA,can be used in diverse areas of optimization problems where convex functions properties are appeared including,industrial planning,resource allocation,scheduling,decision making,pattern recognition and machine learning(optimization techniques;fuzzy logic;convex functions).展开更多
基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pare...基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)作为一种重要的多目标优化方法,已经成功地应用于解决各种多目标优化问题。然而,MOEA/D算法在解决具有高维目标和复杂帕累托前沿(Pareto frontier,PF)的问题时,容易陷入局部最优并难以获得可行解。本文提出一种改进的MOEA/D算法,包括3个优化策略:首先,使用拉丁超立方抽样方法代替随机方法初始化种群,得到分布均匀的初始种群,同时对权重向量关联解的策略进行优化;其次,提出一种稀疏度函数,用于计算种群中个体的稀疏度并维护外部种群;最后,提出了自适应调整权向量的方法,用于引导种群收敛到帕累托前沿,并且有效平衡种群的多样性和收敛性。将提出算法和4种对比算法在DTLZ和WFG系列问题以及多目标旅行商问题(multi-objective travel salesman problem,MOTSP)上进行对比实验,实验结果表明本文提出自适应调整权重向量的多目标进化(MOEA/D with cosine similarity adaptive weight adjustment,MOEA/D-CSAW)算法在处理具有复杂帕累托前沿和高维多目标的问题时,算法的综合性能要优于对比算法。展开更多
文摘A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory.
基金Supported by the National Natural Science Foundation of China(60133010,60073043,70071042)
文摘This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.
基金supported by the National Natural Science Foundation of China(No.60803049,60472060)
文摘In many real-world applications of evolutionary algorithms,the fitness of an individual requires a quantitative measure.This paper proposes a self-adaptive linear evolutionary algorithm (ALEA) in which we introduce a novel strategy for evaluating individual's relative strengths and weaknesses.Based on this strategy,searching space of constrained optimization problems with high dimensions for design variables is compressed into two-dimensional performance space in which it is possible to quickly identify 'good' individuals of the performance for a multiobjective optimization application,regardless of original space complexity.This is considered as our main contribution.In addition,the proposed new evolutionary algorithm combines two basic operators with modification in reproduction phase,namely,crossover and mutation.Simulation results over a comprehensive set of benchmark functions show that the proposed strategy is feasible and effective,and provides good performance in terms of uniformity and diversity of solutions.
基金Supported by the Natonal Natural Science Foundation of China (No. 70071042 60073043)the National 863 Hi-Tech Project of Chi
文摘Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.
文摘A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related to the permissible land uses in certain parts of the mined area. The methodology combines desirability functions and evolution searching algorithms for selection of the optimal reclamation scheme. Its application for the reclamation planning of the Amynteon lignite surface mine in Greece indicated that it handles effectively spatial and non-spatial constraints and incorporates easily the decision-makers preferences regarding the reclamation strategy in the optimization procedure.
文摘Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.71701156,71390331 and 71690242the Natural Science Foundation of Hubei Province of China under Grant No.2017CFB427+5 种基金Key Research Program of Frontier Sciences for Chinese Academy of Sciences under Grant No.QYZDB-SSW-SYS020Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.16YJCZH056Hubei Province Department of Education Humanities and Social Sciences Research Project under Grant No.17Q034Open Funding of Center for Service Science and Engineering,Wuhan University of Science and Technology under Grant No.CSSE2017KA01Open Funding of Intelligent Information Processing and Real-time Industrial System under Grant No.2016znss18BYoung Incubation Program of Wuhan University of Science and Technology under Grant No.2016xz017 and 2017xz031
文摘As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate.
文摘Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal Coding Strategy (DCS), which is convenient for space division and alterable precision, was proposed, and the theory analysis of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal code. In order to utilize the historial information of the existing individuals in the process of evolution and avoid repeated exploring, the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are better than the tradition GAs.
基金the Science and Technology Planning Project of Hunan Province(No.2011TP4016-3)the Construct Program of the Key Discipline(Technology of Computer Application)in Xiangnan University
文摘A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.
文摘The population-based efficient iterative evolutionary algorithm(EA)is differential evolution(DE).It has fewer control parameters but is useful when dealing with complex problems of optimization in the real world.A great deal of progress has already been made and implemented in various fields of engineering and science.Nevertheless,DE is prone to the setting of control parameters in its performance evaluation.Therefore,the appropriate adjustment of the time-consuming control parameters is necessary to achieve optimal DE efficiency.This research proposes a new version of the DE algorithm control parameters and mutation operator.For the justifiability of the suggested method,several benchmark functions are taken from the literature.The test results are contrasted with other literary algorithms.
文摘Recently,genetic algorithms(GAs) have been applied to multi-modal dynamic optimization(MDO).In this kind of optimization,an algorithm is required not only to find the multiple optimal solutions but also to locate a dynamically changing optimum.Our fuzzy genetic sharing(FGS) approach is based on a novel genetic algorithm with dynamic niche sharing(GADNS).FGS finds the optimal solutions,while maintaining the diversity of the population.For this,FGS uses several strategies.First,an unsupervised fuzzy clustering method is used to track multiple optima and perform GADNS.Second,a modified tournament selection is used to control selection pressure.Third,a novel mutation with an adaptive mutation rate is used to locate unexplored search areas.The effectiveness of FGS in dynamic environments is demonstrated using the generalized dynamic benchmark generator(GDBG).
文摘Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic algorithm for dealing with different optimization tasks.The basis of the algorithm is inspired by imperialistic competition.It attempts to present the social policy of imperialisms(referred to empires)to control more countries(referred to colonies)and use their sources.If one empire loses its power,among the others making a competition to take possession of it.Design/methodology/approach–In fuzzy imperialist competitive algorithm(FICA),the colonies have a degree of belonging to their imperialists and the top imperialist,as in fuzzy logic,rather than belonging completely to just one empire therefore the colonies move toward the superior empire and their relevant empires.Simultaneously for balancing the exploration and exploitation abilities of the ICA.The algorithms are used for optimization have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures.FICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing fuzzy logic on it.Findings–Therefore several solution procedures,including ICA,FICA,genetic algorithm,particle swarm optimization,tabu search and simulated annealing optimization algorithm are considered.Finally numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures.Test results present the suitability of the proposed fuzzy ICA for convex functions with little fluctuations.Originality/value–The proposed evolutionary algorithm,FICA,can be used in diverse areas of optimization problems where convex functions properties are appeared including,industrial planning,resource allocation,scheduling,decision making,pattern recognition and machine learning(optimization techniques;fuzzy logic;convex functions).