The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier ...In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.展开更多
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop...The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.展开更多
Inverse materials design tackles the challenge of finding materials with desired properties, tailored to specific applications, by combining atomistic simulations and optimization methods. The search for optimal mater...Inverse materials design tackles the challenge of finding materials with desired properties, tailored to specific applications, by combining atomistic simulations and optimization methods. The search for optimal materials requires one to survey large spaces of candidate solids. These spaces of materials can encompass both known and hypothetical compounds. When hypothetical compounds are explored, it becomes crucial to determine which ones are stable(and can be synthesized) and which are not. Crystal structure prediction is a necessary step for assessing theoretically the stability of a hypothetical material and, therefore, is a crucial step in inverse materials design protocols. Here, we describe how biologically-inspired global optimization methods can efficiently predict the stable crystal structure of solids. Specifically,we discuss the application of genetic algorithms to search for optimal atom configurations in systems in which the underlying lattice is given,and of evolutionary algorithms to address the general lattice-type prediction problem.展开更多
In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear ea...In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.展开更多
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
基金This work was supported by Research Support Fund(RSF)of Symbiosis International(Deemed University),Pune,India。
文摘In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors.
文摘The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
文摘Inverse materials design tackles the challenge of finding materials with desired properties, tailored to specific applications, by combining atomistic simulations and optimization methods. The search for optimal materials requires one to survey large spaces of candidate solids. These spaces of materials can encompass both known and hypothetical compounds. When hypothetical compounds are explored, it becomes crucial to determine which ones are stable(and can be synthesized) and which are not. Crystal structure prediction is a necessary step for assessing theoretically the stability of a hypothetical material and, therefore, is a crucial step in inverse materials design protocols. Here, we describe how biologically-inspired global optimization methods can efficiently predict the stable crystal structure of solids. Specifically,we discuss the application of genetic algorithms to search for optimal atom configurations in systems in which the underlying lattice is given,and of evolutionary algorithms to address the general lattice-type prediction problem.
基金supported by the National Natural Science Foundation of China (Nos. 61271153, 61372039)
文摘In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.