期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Clustering Method Based on Brain Storm Optimization Algorithm
1
作者 Tianyu Wang Yu Xue +3 位作者 Yan Zhao Yuxiang Wang Yan Zhang Yuxiang He 《Journal of Information Hiding and Privacy Protection》 2020年第3期135-142,共8页
In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)... In the field of data mining and machine learning,clustering is a typical issue which has been widely studied by many researchers,and lots of effective algorithms have been proposed,including K-means,fuzzy c-means(FCM)and DBSCAN.However,the traditional clustering methods are easily trapped into local optimum.Thus,many evolutionary-based clustering methods have been investigated.Considering the effectiveness of brain storm optimization(BSO)in increasing the diversity while the diversity optimization is performed,in this paper,we propose a new clustering model based on BSO to use the global ability of BSO.In our experiment,we apply the novel binary model to solve the problem.During the period of processing data,BSO was mainly utilized for iteration.Also,in the process of K-means,we set the more appropriate parameters selected to match it greatly.Four datasets were used in our experiment.In our model,BSO was first introduced in solving the clustering problem.With the algorithm running on each dataset repeatedly,our experimental results have obtained good convergence and diversity.In addition,by comparing the results with other clustering models,the BSO clustering model also guarantees high accuracy.Therefore,from many aspects,the simulation results show that the model of this paper has good performance. 展开更多
关键词 clustering method brain storm optimization algorithm(BSO) evolutionary clustering algorithm data mining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部