Objective:The goal of this study was to get preliminary insight on the intra-tumor heterogeneity in colitisassociated cancer(CAC)and to reveal a potential evolutionary trajectory from ulcerative colitis(UC)to CAC at t...Objective:The goal of this study was to get preliminary insight on the intra-tumor heterogeneity in colitisassociated cancer(CAC)and to reveal a potential evolutionary trajectory from ulcerative colitis(UC)to CAC at the single-cell level.Methods:Fresh samples of tumor tissues and adjacent UC tissues from a CAC patient with pT3N1M0 stage cancer were examined by single-cell RNA sequencing(scRNA-seq).Data from The Cancer Genome Atlas(TCGA)and The Human Protein Atlas were used to confirm the different expression levels in normal and tumor tissues and to determine their relationships with patient prognosis.Results:Ultimately,4,777 single-cell transcriptomes(1,220 genes per cell)were examined,of which 2,250(47%)and 2,527(53%)originated from tumor and adjacent UC tissues,respectively.We defined the composition of cancer-associated stromal cells and identified six cell clusters,including myeloid,T and B cells,fibroblasts,endothelial and epithelial cells.Notable pathways and transcription factors involved in these cell clusters were analyzed and described.Moreover,the precise cellular composition and developmental trajectory from UC to UCassociated colon cancer were graphed,and it was predicted that CD74,CLCA1,and DPEP1 played a potential role in disease progression.Conclusions:scRNA-seq technology revealed intra-tumor cell heterogeneity in UC-associated colon cancer,and might provide a promising direction to identify novel potential therapeutic targets in the evolution from UC to CAC.展开更多
JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a ...JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated2.7 million years ago(mya).Its genome consists of two subgenomes,and subgenome A shares high collinear synteny with pearl millet.We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO.Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes,which was a further indication of asymmetric DNA methylation.The three types of centromeric repeat in the JUJUNCAO genome(CEN137,CEN148,and CEN156)may have evolved independently within each subgenome,with some introgressions of CEN156 from the B to the A subgenome.We investigated the photosynthetic characteristics of JUJUNCAO,revealing its typical C4 Kranz anatomy and high photosynthetic efficiency.NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO,which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield.Taken together,our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies,as well as genetic improvement of Cenchrus grasses.展开更多
基金supported by National Key Research and Development Program of China(No.2017YFC1308800)Industry-University-Research Innovation Fund in Ministry of Education of the People’s Republic of China(No.2018A01013)。
文摘Objective:The goal of this study was to get preliminary insight on the intra-tumor heterogeneity in colitisassociated cancer(CAC)and to reveal a potential evolutionary trajectory from ulcerative colitis(UC)to CAC at the single-cell level.Methods:Fresh samples of tumor tissues and adjacent UC tissues from a CAC patient with pT3N1M0 stage cancer were examined by single-cell RNA sequencing(scRNA-seq).Data from The Cancer Genome Atlas(TCGA)and The Human Protein Atlas were used to confirm the different expression levels in normal and tumor tissues and to determine their relationships with patient prognosis.Results:Ultimately,4,777 single-cell transcriptomes(1,220 genes per cell)were examined,of which 2,250(47%)and 2,527(53%)originated from tumor and adjacent UC tissues,respectively.We defined the composition of cancer-associated stromal cells and identified six cell clusters,including myeloid,T and B cells,fibroblasts,endothelial and epithelial cells.Notable pathways and transcription factors involved in these cell clusters were analyzed and described.Moreover,the precise cellular composition and developmental trajectory from UC to UCassociated colon cancer were graphed,and it was predicted that CD74,CLCA1,and DPEP1 played a potential role in disease progression.Conclusions:scRNA-seq technology revealed intra-tumor cell heterogeneity in UC-associated colon cancer,and might provide a promising direction to identify novel potential therapeutic targets in the evolution from UC to CAC.
基金supported by grants from the Major Special Project of Fujian Province(2021NZ029009)the Natural Science foundation of Fujian Province(2019J01665).
文摘JUJUNCAO(Cenchrus fungigraminus;2n=4x=28)is a Cenchrus grass with the highest biomass production among cultivated plants,and it can be used for mushroom cultivation,animal feed,and biofuel production.Here,we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated2.7 million years ago(mya).Its genome consists of two subgenomes,and subgenome A shares high collinear synteny with pearl millet.We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO.Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes,which was a further indication of asymmetric DNA methylation.The three types of centromeric repeat in the JUJUNCAO genome(CEN137,CEN148,and CEN156)may have evolved independently within each subgenome,with some introgressions of CEN156 from the B to the A subgenome.We investigated the photosynthetic characteristics of JUJUNCAO,revealing its typical C4 Kranz anatomy and high photosynthetic efficiency.NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO,which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield.Taken together,our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies,as well as genetic improvement of Cenchrus grasses.