[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial dist...[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.展开更多
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation...The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.展开更多
It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natur...It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natural environmental background of the development of the ancient civilization in that area to be explored.This paper presents a series of legends,indications,scientific evidence,and macroscopic geographical background information of the evolution in the lower reaches of the Yellow River during the Longshan period.At first the river flowed from Northern Henan and Hebei to southwestern Shandong Province and Northern Anhui–Jiangsu provinces,and the mainstream of the Yellow River changed from the southeast to return to the north and flowed into the Bohai Sea in the late Longshan Period.During this period,floods were frequent.Various ethnic groups in the northern China plains suffered natural disasters and made great migrations which also contributed to the ethnic exchanges and integration.The people of the Central Plains made more dynamic adjustments in the relationship between mankind and the land by primitively escaping from the water and self–defensively controlling the rivers then to maintaining the local ecological environment by large–scale flood control measures,which promoted the settlement of Shandong,Henan,Jiangsu and Anhui provinces,the urban cultural development,and social evolution.Based on these events,the culture symbol of Dayu's Flood Control could be formed.展开更多
The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hu...The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.展开更多
基金Supported by the Key Technology R&D Program of Hebei Province (10277105D)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering(KSCX-EW-J-5)~~
文摘[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.
基金supported by the National Natural Science Foundation of China (51239009, 41171034)Shaanxi Provincial Natural Science Foundation of China (Key) Project (2013JZ012)+1 种基金Shaanxi Provincial Key Laboratory Project of Department of Education (14JS059)Shaanxi Provincial Water Conservancy Science and Technology Project (2016slkj-11)
文摘The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.
文摘It is very important to study the archaeological culture and origin of civilization in ancient China.The changes of the channels in the lower reaches of the Yellow River in the prehistoric period are part of the natural environmental background of the development of the ancient civilization in that area to be explored.This paper presents a series of legends,indications,scientific evidence,and macroscopic geographical background information of the evolution in the lower reaches of the Yellow River during the Longshan period.At first the river flowed from Northern Henan and Hebei to southwestern Shandong Province and Northern Anhui–Jiangsu provinces,and the mainstream of the Yellow River changed from the southeast to return to the north and flowed into the Bohai Sea in the late Longshan Period.During this period,floods were frequent.Various ethnic groups in the northern China plains suffered natural disasters and made great migrations which also contributed to the ethnic exchanges and integration.The people of the Central Plains made more dynamic adjustments in the relationship between mankind and the land by primitively escaping from the water and self–defensively controlling the rivers then to maintaining the local ecological environment by large–scale flood control measures,which promoted the settlement of Shandong,Henan,Jiangsu and Anhui provinces,the urban cultural development,and social evolution.Based on these events,the culture symbol of Dayu's Flood Control could be formed.
文摘The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.