This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy...This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
The stabilization of PAN-fibers without additional co-monomers was investigated with thermo-gravimetry and evolved gas analysis (FTIR-spectroscopy and MS-spectrometry). One fiber type had been drawn after spinning, wh...The stabilization of PAN-fibers without additional co-monomers was investigated with thermo-gravimetry and evolved gas analysis (FTIR-spectroscopy and MS-spectrometry). One fiber type had been drawn after spinning, while the other was used as-spun. During the thermal treatment, fiber shrinkage was either restricted or unrestricted. Investigations of influencing chemical and physical reactions regarding this restriction were conducted. Differences in the mass loss and gas emissions were observed, depending on the strained or unstrained state of the fibers. The change of crystallinity and molecular orientation of the fiber as reason of the measured variations was discussed. The emission of ammonia and other nitrogen containing gases (supposedly nitriles/ isocyanates) could be attributed to different aspects of the stabilization process. The length restriction resulted in a change in ammonia emission, associated with the cyclization reaction of poly acrylonitrile. The onset and amount of side reactions were influenced as well.展开更多
3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior deton...3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.展开更多
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
文摘The stabilization of PAN-fibers without additional co-monomers was investigated with thermo-gravimetry and evolved gas analysis (FTIR-spectroscopy and MS-spectrometry). One fiber type had been drawn after spinning, while the other was used as-spun. During the thermal treatment, fiber shrinkage was either restricted or unrestricted. Investigations of influencing chemical and physical reactions regarding this restriction were conducted. Differences in the mass loss and gas emissions were observed, depending on the strained or unstrained state of the fibers. The change of crystallinity and molecular orientation of the fiber as reason of the measured variations was discussed. The emission of ammonia and other nitrogen containing gases (supposedly nitriles/ isocyanates) could be attributed to different aspects of the stabilization process. The length restriction resulted in a change in ammonia emission, associated with the cyclization reaction of poly acrylonitrile. The onset and amount of side reactions were influenced as well.
基金Supported by the National Natural Science Foundation of China(No.21175106) and the Specialized Research Fund for the Doctoral Program of Higher Education, China(No.20126101110019).
文摘3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.