The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative ...The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative law of coal of pore pressure (p) and effective stress (σef)i were investigated during methane drainage with the coal sample of China Lu'an coal field No.3 coal seam. The experiment results indicate: during methane drainage pore pressure (p) follows exponential attenuation law: p=aexp(-bt); effective stress (σef)i of coal masses follows logarithm incremental law: (σef),=aln t+b, (i=x, y, z); effective stress coefficient(a) follows logarithm attenuation law: a=a-bln t; effective stress coefficient, volume stress (Θef) and pore pressure (p) follow bilinear law.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing...Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and ...At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and tested in an oil field.The effects that the initial pH value,electrode type,and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil.The results have shown that when the electro-coagulation method is used,the effectiveness of the treatment can be significantly increased in neutral pH conditions(pH=7),in acidic conditions,and in alkaline conditions.Compared to an Al electrode,the floc that is produced by an Fe electrode is smaller;thus,it does not easily coagulate and settle in a short time.Using the oil removal rate,turbidity removal rate and energy consumption as a basis to assess the performances,the results have demonstrated that the combined aluminum alloy iron composite electrode should be used as electrolytic electrode.展开更多
The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry...The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry rock.At present,how temporary plugging agents plug artificial fractures under high temperature remains unclear.In this paper,by establishing an improved experimental system for the evaluation of temporary plugging performance at high temperature,we clarified the effects of high temperature,injection rate,and fracture width on the pressure response and plugging efficiency of the fracture.The results revealed that the temporary plugging process of artificial fractures in hot dry rock can be divided into four main stages:the initial stage of temporary plugging,the bridging stage of the particles,the plugging formation stage,and the high-pressure dense plugging stage.As the temperature increases,the distribution distance of the temporary plugging agent,the number of pressure fluctuations,and the time required for crack plugging increases.Particularly,when the temperature increases by 100℃,the complete plugging time increases by 90.7%.展开更多
Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structura...Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structural materials,or from damaged/molten fuel).Such particles may cause flow blockage accidents in a fuel assembly,resulting in a reduction in coolant flow,which potentially causes a local temperature rise in the fuel cladding,cladding failure,and fuel melt.To understand the blockage formation mechanism,in this study,a series of simulated experiments was conducted by releasing different solid particles from a release device into a reducer pipe using gravity.Through detailed analyses,the influence of various experimental parameters(e.g.,particle diameter,capacity,shape,and static friction coefficient,and the diameter and height of the particle release nozzle)on the blockage characteristics(i.e.,blockage probability and position)was examined.Under the current range of experimental conditions,the blockage was significantly influenced by the aforementioned parameters.The ratio between the particle diameter and outlet size of the reducer pipe might be one of the determining factors governing the occurrence of blockage.Specifically,increasing the ratio enhanced blockage(i.e.,larger probability and higher position within the reducer pipe).Increasing the particle size,particle capacity,particle static friction coefficient,and particle release nozzle diameter led to a rise in the blockage probability;however,increasing the particle release nozzle height had a downward influence on the blockage probability.Finally,blockage was more likely to occur in non-spherical particles case than that of spherical particles.This study provides a large experimental database to promote an understanding of the flow blockage mechanism and improve the validation process of fast reactor safety analysis codes.展开更多
Mainly for the problem that the friction force generated by the existing process of bind-ing,fixing and fastening the flexible cable on the satellite is unknown,the friction force analysis and experimental research on...Mainly for the problem that the friction force generated by the existing process of bind-ing,fixing and fastening the flexible cable on the satellite is unknown,the friction force analysis and experimental research on the binding point of the flexible cable are carried out.The equivalent model of the cable bundle bound by nylon cable ties is established,the force on the binding point is analyzed,and the empirical formula for calculating the friction force at the binding point is estab-lished.The formula shows that the friction force is related to the cable bundle diameter,the number of winding cycles of silicone rubber tape,the width of nylon cable ties,and the binding force.The friction force tests of the cable diameter of 5.06 mm,8.02 mm,24.02 mm,38.04 mm under different winding turns of tape were carried out,which was compared with the theoretical calculation value.It is concluded that the calculation accuracy of the theoretical model is more than 95%,which can estimate the actual friction force value accurately.This provides a reference and basis for the theoretical and experimental research on the friction force of the flexible cable binding point on satellite.展开更多
Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in...Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in this study,uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting.The center of each marble plate(105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot(depth:2 mm,width:0.5 mm).The deformation and destruction processes of the rock surface were recorded using a high-speed camera.The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages.The accumulative and incremental displacement fields u and v,strain field exand e_(y),and shear strain e_(xy) were analyzed.When the loading level reached its ultimate value,the strain field was concentrated around the prefabricated slot.The concentration reached a maximum at the ends of the prefabricated slot.The magnitude of shear strain reached 0.1.This experiment contributes to our understanding of the dynamic process of active faulting.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
Introduction: The healthcare industry continues to adopt and integrate smart technology into its operations. However, the adoption of the eHealth solutions has not been smooth in the Kingdom of Saudi Arabia (KSA) due ...Introduction: The healthcare industry continues to adopt and integrate smart technology into its operations. However, the adoption of the eHealth solutions has not been smooth in the Kingdom of Saudi Arabia (KSA) due to negative beliefs about the technology, lack of awareness and motivation and resistance to change. Thus, this study was developed to investigate the knowledge and perceptions of hospital care staff towards the Medical Internet of Things and to explore the role of awareness videos in changing negative perceptions. Methods: One group pre-test post-test quasi-experimental study design was incorporated, and 116 participants from Ministry of Health hospitals in Riyadh, KSA, were included. A series of four videos were developed to observe their influence on the knowledge and perceptions of mIoT. Results: The findings showed that participants had more knowledge about the individual components of mIoT (particularly wearable devices) compared to the processes or functions of mIoT. Similarly, just over half (56.0%) of the individuals think that the current systems in the hospital are enough to deliver mIoT. However, 90% think mIoT is the future of digital health. Similarly, PE, SI, BI, EE and CESE were considered facilitators and PTA and CC were considered grave barriers to mIoT adoption. The awareness videos positively influenced knowledge and perceptions of PE, EE, CESE and SI. Conclusion: The study concludes that hospital staff in Riyadh (excluding doctors) possess basic mIoT knowledge, consider various adoption factors as enablers, and awareness video can play a critical role in effectively introducing the technology to the hospital care staff.展开更多
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond...Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.展开更多
The development of information technology, especially the rise of online teaching platforms, has changed the way people read and the methods they use. Under this influence, primary school students’ independent readin...The development of information technology, especially the rise of online teaching platforms, has changed the way people read and the methods they use. Under this influence, primary school students’ independent reading has also been changed. However, due to limited self-control and understanding, primary school students face certain difficulties when using online teaching platforms for independent reading. Advantages and disadvantages of distance learning based on the network teaching platform were summarized in this paper. A one-year experiment study was carried out on our school fifth-grade students in independent reading using WeChat campus platform considering their current situation and existing problems of independent reading. In experiment study an independent reading mode was introduced. The results show that this reading mode can significantly improve students’ independent reading ability.展开更多
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z...This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.展开更多
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai...In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai Injection increased Pdi of the fatigued diaphragm in rabbits and reduced the time needed for the recovery of Pdi of fatigued diaphragm to the normal value. These results suggest that Sheng-Mai Injection can increase the contractive force and promote the recovery of the fatigued diaphragm. The effect of Sheng-ai Injection on the contractivity of the isolated diaphragmatic bundle of rats was also observed and the results confirmed that Sheng-ai Injection increased the diaphragmatic contractive force directly. This effect of increasing the contractive force of diaphragm was attenuated by adding calcium channel blocker isoptin and disappeared when there was no calcium in the extracellular fluid. It is deduced, therefore, that the mechanism of the effect of Sheng-mai Injection is related to the increased influx of calcium from extracellular fluid into the cells.展开更多
Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between ...Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.展开更多
Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise a...Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.展开更多
Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one...Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.展开更多
基金Supported by the National Natural Science Foundation of China(50404017) the Natural Science Foundation for Young Scientists of Shanxi Province, China (20051026)
文摘The methane drainage can not only make coal seams deformation, but also effect its stress distribution. Based on lab experiment on methane drainage with a cubic coal sample of 500 mm×500 mm×500 mm, mutative law of coal of pore pressure (p) and effective stress (σef)i were investigated during methane drainage with the coal sample of China Lu'an coal field No.3 coal seam. The experiment results indicate: during methane drainage pore pressure (p) follows exponential attenuation law: p=aexp(-bt); effective stress (σef)i of coal masses follows logarithm incremental law: (σef),=aln t+b, (i=x, y, z); effective stress coefficient(a) follows logarithm attenuation law: a=a-bln t; effective stress coefficient, volume stress (Θef) and pore pressure (p) follow bilinear law.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFF0600208)National Natural Science Foundation of China (Grant No.52005170)Hunan Provincial Science and Technology Innovation Program of China (Grant No.2020RC4018)。
文摘Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.
文摘At present,methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development.In this study,a device for electro-coagulation wastewater treatment was built and tested in an oil field.The effects that the initial pH value,electrode type,and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil.The results have shown that when the electro-coagulation method is used,the effectiveness of the treatment can be significantly increased in neutral pH conditions(pH=7),in acidic conditions,and in alkaline conditions.Compared to an Al electrode,the floc that is produced by an Fe electrode is smaller;thus,it does not easily coagulate and settle in a short time.Using the oil removal rate,turbidity removal rate and energy consumption as a basis to assess the performances,the results have demonstrated that the combined aluminum alloy iron composite electrode should be used as electrolytic electrode.
基金supported financially by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.51936001,No.52274002 and No.52192622)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(2021DQ02–0201)Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(No.BIPTACF-002).
文摘The effective plugging of artificial fractures is key to the success of temporary plugging and diverting fracturing technology,which is one of the most promising ways to improve the heat recovery efficiency of hot dry rock.At present,how temporary plugging agents plug artificial fractures under high temperature remains unclear.In this paper,by establishing an improved experimental system for the evaluation of temporary plugging performance at high temperature,we clarified the effects of high temperature,injection rate,and fracture width on the pressure response and plugging efficiency of the fracture.The results revealed that the temporary plugging process of artificial fractures in hot dry rock can be divided into four main stages:the initial stage of temporary plugging,the bridging stage of the particles,the plugging formation stage,and the high-pressure dense plugging stage.As the temperature increases,the distribution distance of the temporary plugging agent,the number of pressure fluctuations,and the time required for crack plugging increases.Particularly,when the temperature increases by 100℃,the complete plugging time increases by 90.7%.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(Nos.2021A1515010343,2022A1515011582)the Science and Technology Program of Guangdong Province(Nos.2021A0505030026,2022A0505050029).
文摘Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structural materials,or from damaged/molten fuel).Such particles may cause flow blockage accidents in a fuel assembly,resulting in a reduction in coolant flow,which potentially causes a local temperature rise in the fuel cladding,cladding failure,and fuel melt.To understand the blockage formation mechanism,in this study,a series of simulated experiments was conducted by releasing different solid particles from a release device into a reducer pipe using gravity.Through detailed analyses,the influence of various experimental parameters(e.g.,particle diameter,capacity,shape,and static friction coefficient,and the diameter and height of the particle release nozzle)on the blockage characteristics(i.e.,blockage probability and position)was examined.Under the current range of experimental conditions,the blockage was significantly influenced by the aforementioned parameters.The ratio between the particle diameter and outlet size of the reducer pipe might be one of the determining factors governing the occurrence of blockage.Specifically,increasing the ratio enhanced blockage(i.e.,larger probability and higher position within the reducer pipe).Increasing the particle size,particle capacity,particle static friction coefficient,and particle release nozzle diameter led to a rise in the blockage probability;however,increasing the particle release nozzle height had a downward influence on the blockage probability.Finally,blockage was more likely to occur in non-spherical particles case than that of spherical particles.This study provides a large experimental database to promote an understanding of the flow blockage mechanism and improve the validation process of fast reactor safety analysis codes.
基金supported by National Defense Basic Scientific Research Funding Project(No.JCKY2022203C048)Equipment Advanced Research Funding Program(No.41423010401).
文摘Mainly for the problem that the friction force generated by the existing process of bind-ing,fixing and fastening the flexible cable on the satellite is unknown,the friction force analysis and experimental research on the binding point of the flexible cable are carried out.The equivalent model of the cable bundle bound by nylon cable ties is established,the force on the binding point is analyzed,and the empirical formula for calculating the friction force at the binding point is estab-lished.The formula shows that the friction force is related to the cable bundle diameter,the number of winding cycles of silicone rubber tape,the width of nylon cable ties,and the binding force.The friction force tests of the cable diameter of 5.06 mm,8.02 mm,24.02 mm,38.04 mm under different winding turns of tape were carried out,which was compared with the theoretical calculation value.It is concluded that the calculation accuracy of the theoretical model is more than 95%,which can estimate the actual friction force value accurately.This provides a reference and basis for the theoretical and experimental research on the friction force of the flexible cable binding point on satellite.
基金This research was supported by the National Key R&D Program of China(Nos.2018YFC1504203 and SQ2017YFSF040025).
文摘Earthquakes result from continuous geodynamic processes.A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks.Therefore,in this study,uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting.The center of each marble plate(105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot(depth:2 mm,width:0.5 mm).The deformation and destruction processes of the rock surface were recorded using a high-speed camera.The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages.The accumulative and incremental displacement fields u and v,strain field exand e_(y),and shear strain e_(xy) were analyzed.When the loading level reached its ultimate value,the strain field was concentrated around the prefabricated slot.The concentration reached a maximum at the ends of the prefabricated slot.The magnitude of shear strain reached 0.1.This experiment contributes to our understanding of the dynamic process of active faulting.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.
文摘Introduction: The healthcare industry continues to adopt and integrate smart technology into its operations. However, the adoption of the eHealth solutions has not been smooth in the Kingdom of Saudi Arabia (KSA) due to negative beliefs about the technology, lack of awareness and motivation and resistance to change. Thus, this study was developed to investigate the knowledge and perceptions of hospital care staff towards the Medical Internet of Things and to explore the role of awareness videos in changing negative perceptions. Methods: One group pre-test post-test quasi-experimental study design was incorporated, and 116 participants from Ministry of Health hospitals in Riyadh, KSA, were included. A series of four videos were developed to observe their influence on the knowledge and perceptions of mIoT. Results: The findings showed that participants had more knowledge about the individual components of mIoT (particularly wearable devices) compared to the processes or functions of mIoT. Similarly, just over half (56.0%) of the individuals think that the current systems in the hospital are enough to deliver mIoT. However, 90% think mIoT is the future of digital health. Similarly, PE, SI, BI, EE and CESE were considered facilitators and PTA and CC were considered grave barriers to mIoT adoption. The awareness videos positively influenced knowledge and perceptions of PE, EE, CESE and SI. Conclusion: The study concludes that hospital staff in Riyadh (excluding doctors) possess basic mIoT knowledge, consider various adoption factors as enablers, and awareness video can play a critical role in effectively introducing the technology to the hospital care staff.
基金supported by Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)Design and Control Strategy Research of PEM Fuel Cell Hybrid Propulsion System for Ships(2024R411015)+1 种基金Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)General Program of Education Department of Zhejiang Province(Y202250817)which was gained by Chen.
文摘Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°.
文摘The development of information technology, especially the rise of online teaching platforms, has changed the way people read and the methods they use. Under this influence, primary school students’ independent reading has also been changed. However, due to limited self-control and understanding, primary school students face certain difficulties when using online teaching platforms for independent reading. Advantages and disadvantages of distance learning based on the network teaching platform were summarized in this paper. A one-year experiment study was carried out on our school fifth-grade students in independent reading using WeChat campus platform considering their current situation and existing problems of independent reading. In experiment study an independent reading mode was introduced. The results show that this reading mode can significantly improve students’ independent reading ability.
基金supported by National Natural Science Foundation of China(Project No.51878156,received by Wen-Wei Wang and EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399,received by Wen-Wei Wang and ZhaoJun Zhang).
文摘This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘In this study the effect of Sheng-ai Injection i.e. Red Ginseng-Ophiopogon Root Injection (one kind of traditional Chinese medicines) on the contractivity of diaphragm was observed. The results confirmed that Sheng-ai Injection increased Pdi of the fatigued diaphragm in rabbits and reduced the time needed for the recovery of Pdi of fatigued diaphragm to the normal value. These results suggest that Sheng-Mai Injection can increase the contractive force and promote the recovery of the fatigued diaphragm. The effect of Sheng-ai Injection on the contractivity of the isolated diaphragmatic bundle of rats was also observed and the results confirmed that Sheng-ai Injection increased the diaphragmatic contractive force directly. This effect of increasing the contractive force of diaphragm was attenuated by adding calcium channel blocker isoptin and disappeared when there was no calcium in the extracellular fluid. It is deduced, therefore, that the mechanism of the effect of Sheng-mai Injection is related to the increased influx of calcium from extracellular fluid into the cells.
基金National Natural Science Foundation of China Under Grant No. 50025821
文摘Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.
文摘Mixed gases (CO 2 and CH 4 etc .) in different ratio under the action of transient electric field may cause temperature to increase about 6℃, while under that of solar irradiation may lead temperature to rise around 3℃. The temperature increasing mechanism of satellitic thermo infrared of lower air is explained here based on an experimental study: thermo infrared temperature increasing of lower atmosphere may be caused by paroxysmal releasing of crustal gas and sudden changing of lower atmosphere electrostatic field. Therefore, appearance of the anomaly of thermo infrared temperature increasing prior to a moderate strong earthquake requires the concurrence of gas paroxysmal releasing and electrostatic field sudden changing at the same time.
文摘Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.