In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equa...In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equations are obtained.In particular,the soliton solutions of two equations are found. Received November 25,1996.Revised June 30,1997.1991 MR Subject Classification:35Q53.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second ki...To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived sol...Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = ...The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.展开更多
By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solu...By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, ...In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of net...Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding(VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.展开更多
In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions ar...In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).展开更多
With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usi...With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.展开更多
文摘In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equations are obtained.In particular,the soliton solutions of two equations are found. Received November 25,1996.Revised June 30,1997.1991 MR Subject Classification:35Q53.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
基金Supported by the Natural Natural Science Foundation of China under Grant No.10461006the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China under Grant No.NJZZ07031the Natural Science Foundation of Inner Mongolia Autonomous Region,China under Grant No.2010MS0111
文摘To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
基金浙江省自然科学基金,Foundation of New Century "151 Talent Engineering" of Zhejiang Province,丽水学院校科研和教改项目,the Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.
文摘By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
基金Natural Science Foundation of Shandong Province under Grant Nos.2004zx16 and Q2005A01
文摘In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329104the National Natural Science Foundation of China under Grants 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization is an enabling technology of running multiple virtual networks on a shared substrate network. It aims to deal with the ossification of current network architecture. As a crucial component of network virtualization, virtual network embedding(VNE) can efficiently and effectively allocates the substrate resource to proposed virtual network requests. According to the optimization strategy, VNE approaches can be classified into three categories: exact, heuristic and meta-heuristic solution. The VNE exact solution is the foundation of its corresponding heuristic and meta-heuristic solutions. This paper presents a survey of existing typical VNE exact solutions, and open problems for the future research of VNE exact solutions are proposed.
基金The project supported by the State Key Basic Research Program of China under Grant No 2004CB318000
文摘In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).
基金Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF 11076015)
文摘With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.